
Lecture notes on Information Theory
ENS Lyon

(Under construction)

Omar Fawzi

September 13, 2017

Chapter 1

Introduction

The modern theory of information comes from communications theory. What is called information
theory nowadays was pioneered by Shannon in 1948 in his landmark paper [2]. The fundamental
problem that started the area is the problem of reliable communication over an unreliable channel.
In Shannon’s words, “The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point.” This is a very broad
class of problems. A point can be in space or in time.

1. Point 1: Computer memory at time t1, Point 2: Computer memory at time t2

2. Point 1: DNA of a parent cell, Point 2: DNA of a daughter cell

3. Point 1: Your computer, Point 2: Another computer in the network

4. Point 1: IT notebook in 2016, Point 2: IT notebook in 2026

Between these two points: there is a communication channel which might add some noise to
the signal. In the examples shown above, this channel might be modelling the passage of time or
the errors introduced by the wires in the network. Our objective would be that the message selected
at Point 1 is the same as the message obtained at Point 2. From an engineering point of view, we
may solve this problem in two ways.

1. Improve the communication channel, to reduce the errors

2. Accept the errors as given, and build a system on top of the channel that allows one to correct
for errors.

We will take this second approach here, which might be illustrated as follows

Encoder Channel Decoder

s t r ŝ

Our objective is to find a “good” encoding and decoding strategy. In particular, one property
we would like to have is P {s 6= ŝ} is small.

1

1.1 An introductory example
Suppose I know how to build a memory cell storing a bit with the following properties.After a
year, the bit stays the same with probability 1 − f and gets flipped with probability f . Moreover,
the different cells are assumed to behave independently. One cell is modeled as a channel which is
nothing but a collection of distribution over the bitstrings. We use conditional probability notation
W (y|x) for the probability of seeing output y when the input is x. For our case, we have for
b ∈ {0, 1}, W (b|b) = 1 − f and W (1 − b|b) = f . Using these cells, I want to be able to store
s ∈ {0, 1}n.

Think of n = 106 bits and f = 0.1.

1.1.1 Encoding 1: Trivial encoding
In this case, the encoding function is trivial with just ti = si, and the decoder sets ŝi = ri. Note
that ri is random because the noise applied is random, and thus ŝi is also random. Let us look at
some properties of this code.

Bit error probability. This is the average error in a bit, 1
n

∑n
i=1 P {si 6= ŝi}. In this case, we

have for any i ∈ {1, . . . , n}, P {si 6= ŝi} = f .
We note here that the number of bit flips is the Hamming distance ∆(s, ŝ) between s and ŝ. This

has a binomial distribution with parameters (n, f). So E {∆(s, ŝ)} = nf and Var {∆(s, ŝ)} =
nf(1− f). So with high probability, the number of flips is going to be close to nf .

Block error probability. Ideally, we would like to have no error at all in ŝ not in even one bit.
We would like the block error probability P {s 6= ŝ} to be small. For this trivial encoding, we have
P {s 6= ŝ} = 1 − P {s = ŝ} = 1 − (1 − f)n. When fn � 1, which is the case for the numbers
we are thinking of, this probability is extremely close to 1.

Rate. The rate is the number of bits that are stored divided by the number of cells that are used.
For the trivial code, the rate is n

n
= 1.

1.1.2 Encoding 2: Repetition code
Here the idea is to take each one of the n bits and repeat it 3 times. So for j ∈ {1, 2, 3} and
i ∈ {1, . . . , n} t3(i−1)+j = si.

Rate. We now use 3 cells to encode each bit so the rate is 1
3
.

To determine the error probabilities, we need to choose a way of decoding. It is natural to
decode r by looking at blocks of 3 bits each, and for each triple, we decode it to the bit which
appears the most among the 3. This means that ŝi = maj{r3(i−1)+1, r3(i−1)+2, r3(i−1)+3}.

2

Bit error probability.

P {si 6= ŝi} = P {2 or more flips}
= P

{
|{j ∈ {1, 2, 3} : t3(i−1)+j 6= r3(i−1)+j}| ≥ 2

}
= 3f 2(1− f) + f 3 = 3f 2 − 2f 3 .

Note that this is smaller than f for f < 1
2
. In particular, for f = 0.1, 3f 2 − 2f 3 = 0.028. So at the

cost of decreasing the rate, we managed to decrease the error probability.

Block error probability.

P {s 6= ŝ} = 1−P {∀i ∈ {1, . . . , n}, si = ŝi}
= 1− (1− 3f 2 + 2f 3)n

≈ 1− 0.972n

1.1.3 Encoding 3: Taking larger blocks
Now we block the message s1 . . . sn into blocks of 4 bits and encode each bit separately. For
each one of these blocks, we take the (7, 4)-Hamming code, which is defined as follows. We take
t1 = s1, t2 = s2, t3 = s3, t4 = s4 and we add parity bits t5 = s1 ⊕ s2 ⊕ s3, t6 = s2 ⊕ s3 ⊕ s4 and
t7 = s1 ⊕ s3 ⊕ s4.

s1 s2
s3

s4

t5

t6t7

Figure 1.1: Illustration of the Hamming code. Note that the parity of each circle is 0.

Rate. The rate is given by n
7·n

4
= 4

7
.

We now have to determine a method of decoding. And here again, it is natural to decode our
message by blocks of 7 bits. So given r1, . . . , r7, we would like to compute a candidate ŝ1, . . . , ŝ4.
Suppose that there is at most one flip that occurred when going from t1 . . . t7 to r1 . . . r7. Then it is
possible to determine which bit was flipped. In fact, among the three circles, some of them have a
parity of 0 and some others a parity of 1. We consider the bit that is in all the circles of parity 1 and
not in the circles of parity 0, this defines a unique bit and flipping it gives back string that satisfies
all the parity constraints of the code. Then taking the first 4 bits of this string gives our decoding
string ŝ. And of course for each block of 7 bits, we do the same procedure.

As such, if there is at most one error that occurs in a block of 7 bits, then we can correct it. So
we can compute the block error probability (note that block here refers to the full block of n bits).

3

Block error probability.

P {s 6= ŝ} = 1−P
{
∀i ∈

{
0, . . . ,

n

4
− 1
}
, j ∈ {1, 2, 3, 4} : s4i+j = ŝ4i+j

}
= 1−

n/4−1∏
i=0

P {∀j ∈ {1, 2, 3, 4} : s4i+j = ŝ4i+j}

≤ 1− (P {at most 1 error in a block of 7 bits})n/4

= 1−
(
(1− f)7 + 7f(1− f)6

)n/4
.

For f = 0.1, we get that (1 − f)7 + 7f(1 − f)6 ≈ 0.85. So the error probability is roughly
1− 0.85n/4 ≈ 1− 0.96n, so this is a slightly worse than the repetition code, which was 1− 0.972n

but better than the trivial code.

Bit error probability. One easy bound is to just say that

P {s1 6= ŝ1} ≤ P {s1s2s3s4 6= ŝ1ŝ2ŝ3ŝ4} ≤ 1−P {at most 1 error in the block of 7 bits}
= 1− (1− f)7 − 7f(1− f)6

≈ 0.15 for f = 0.1 .

Note that for a bit error probability, this is not great as it is worse than 0.1 which is what
one gets for the trivial code. One can obtain better bounds by studying error patterns with
two or more flips that do not cause the bit 1 to change. If at least one circle in which s1 is
included does not change parity and s1 itself is not flipped, then after applying the decoder,
ŝ1 = s1. Examples of error patterns of weight two that do not cause s1 to flip include:
{s3, s4}, {s3, t7}, {s4, t7}, {s2, s3}, {s2, t5}, {s3, t5}, {t5, t6}, {s2, t6}, {t6, t7}, {s4, t6}. These are
10 error patters. So we have the bound

P {s1 6= ŝ1} ≤ 1− (1− f)7 − 7f(1− f)6 − 10f 2(1− f)5

≈ 0.09 for f = 0.1 .

One can still improve the bound but we will stop here as this is becoming tedious. We have at
least shown that the bit error probability is less than 0.1! Note that the calculation is similar of
P {si 6= ŝi} is similar for i ∈ {2, 3, 4}.

We can summarize the various encoding strategies we have seen so far in the the following
plot. Our objective is to determine the boundary between what is achievable and what is not.

The conventional wisdom would say that in order to decrease the error probability to zero, one
needs the rate to go to zero. However, what Shannon remarkably showed is that one can make
the error probability arbitrarily close to 0 while the rate stays strictly positive. Even more, it
is the block error that can be made arbitrarily small, not only the bit error probability.

For our example, with a memory cell with flip probability f = 0.1, it turns out that the optimal
rate is 0.53. This means that one can use only 2n cells in order to store a file of n bits, and this
with a very small block error probability (this error probability can be made arbitrarily small as
n→∞).

blue[Course structure. The first part is Information theory where we discuss the two main
typical problems: Data compression and then channel coding. In the second part we discussion
efficient error correcting codes.]

4

Rate

Bit error prob.

14
7

1
3

0.1

0.028

Trivial code

Repetition

Hamming

Not achievable

Achievable

Figure 1.2: Bit error versus rate. We have discussed 3 examples of codes, and they seem to suggest
that if we ask the error to go to zero, then the rate needs to go to zero as well. Shannon’s noisy
coding theorem remarkably shows that it is possible to have an arbitrarily small bit error probability
and a nonzero rate.

5

Chapter 2

Information measures

There are multiple ways of defining how much information there is in some data X . A natural
starting point is to say that it is the size of the minimum description of X . For a computer scientist
a natural description of the data X is a computer program that generates output X . In this case,
one might define the information in a given X as the size of the smallest program that outputs X
on some fixed input. This is referred to as the Kolmogorov complexity of X or the algorithmic
entropy ofX . Even though such a definition is very elegant, this quantity is not computable, which
limits its usefulness.

Rather the more successful approach which is taken in “standard” information theory is to
define a probabilistic model for the dataX and define entropy in terms of the minimum description
length (this could be in expectation over the probabilistic model or by allowing a small probability
of error).

2.1 Probability notation
All the systems in this course are going to be finite. We consider a probability triple (Ω, E ,P)
with a finite sample space Ω, a set of events E and a probability measure P. Let X : Ω → X
be a random variable taking values in a finite set X . We define the function PX : X → R by
PX(x) = P {X = x}. We will also use for an event E with nonzero probability, PX|E(x) =

P {X = x|E} = P{X=x∩E}
P{E} . We also use X ∼ PX to say that X has a distribution PX .

2.2 Entropy of an event or a random variable
Suppose we have the following simple model for the weather: it is sunny with probability 1

2
and

cloudy with probability 1
2
. Then it is natural to say that learning about whether a day is sunny or

cloudy reveals one bit of information. In fact, if you wanted to describe in terms of a bitstring
the weather, one bit is the best one can do. As such, we might assign to both events “sunny” and
cloudy an entropy of 1.

Suppose now on the other hand that it is sunny with probability 0.999 and rainy with probability
0.001. Then discovering that it is sunny does not give us much information as this is an event that
almost always happens. What value of entropy shall we assign to such events? For this let us state

6

some natural properties we would like the entropy h(E) of an event E to have. First, we ask that
h(E) only depends on P {E}. This is to ensure that the entropy is not a quantity that depends on
the way we build up the probability space. In addition, we require something stronger that for a
given probability p ∈ [0, 1], all events E in all probability spaces that have P {E} = p have the
same value of the entropy. This means that h(E) = f(P {E}) for some function f : [0, 1]→ R+.

An additional natural property we would want is the following additivity property. Suppose
I see two events E and E ′ that are independent, we would like to say that the information in the
event E ∩ E ′ is the sum of the entropies of E and E ′. In particular, if we take two independent
events, each with probability 1

2
, then we require that f(1

4
) = h(E∩E ′) = h(E)+h(E ′) = 2. More

generally, we require that f(
(

1
2

)m
) = m. In addition, we have f(p) = f((p1/n)n) = nf(p1/n).

Applying this to p =
(

1
2

)m, we obtain f(
(

1
2

)m
n) = m

n
. Assuming in addition that f is a continuous

function leads to f(
(

1
2

)z
) = z for any z ∈ [0,∞), which is the same as f(p) = − log2 p. This

leads us to the definition of the entropy of an event.

Definition 2.2.1 (Entropy of event). The entropy of events is defined as

h : E → R+ ∪ {∞}
E 7→ − log2 P {E} .

In particular, a random variable X naturally defines the events {X = x}, which leads to a
restriction of the function h defined as

hX : X → R+ ∪ {∞}
x 7→ − log2 PX(x) .

We call the random variable hX(X) the surprisal of the random variable X .

Thus, if X is a random variable that represents the data, it is natural to define the hX(X) as
its entropy. Note that hX(X) is a random variable, i.e., it takes different values depending on the
realisation of X . To get a single number that represents this random variable, it is natural to take
its expectation.

Definition 2.2.2. The (Shannon) entropy of a random variable X ∈ X is given by

H(X) = E {hX(X)} = −
∑
x∈X

PX(x) log2 PX(x) .

Remark.

• Note that the entropy of X only depends on the probabilities PX and not the values taken by
X . For example, the random variable 2X has exactly the same entropy as X .

• The unit of this quantity is bits (it would be nats if we take the log base e)

• We take the convention that 0 log2 0 = 0, so an x ∈ X for which PX(x) = 0 does not
contribute to the entropy.

• A comment on the definition of PX(X). Note that this is not P {X = X} but rather it is just
the function PX : X → R applied to the random variable.

7

• Wa also note that the average is not the only interesting property of hX(X), the minimum
also has a name Hmin(X) = minx hX(x) and is often used in cryptography.

ut

Proposition 2.2.3. For any random variable X ∈ X , we have

0 ≤ H(X) ≤ log |X | ,

with equality H(X) = 0 if and only if X is a constant random variable and H(X) = log |X| if
and only if X is uniformly distributed.

Proof The positivity is clear. For the upper bound, we use the concavity of the log2 function:

H(X) = E

{
log2

1

PX(X)

}
≤ log2 E

{
1

PX(X)

}
= log2

∑
x∈X

PX(x)
1

PX(x)
= log2 |X | .

The equality condition comes from the strict concavity of the logarithm. ut

Example. If X ∈ {0, 1} with PX(1) = p, then H(X) = −p log2 p− (1− p) log2(1− p). This
is a function that often comes up so we give it a name h2 : [0, 1]→ [0, 1].

TODO: graph here.

2.2.1 Joint entropy and conditional entropy
If we consider two random variables X ∈ X and Y ∈ Y , then we can define the joint
entropy H(X, Y) = −

∑
x∈X ,y∈Y PXY (x, y) log2 PXY (x, y). We also use drop the comma, writing

H(XY) for H(X, Y), even though XY does not in any way refer to a product.

Definition 2.2.4. The conditional entropy H(X|Y) is defined by

H(X|Y) =
∑
y∈Y

PY (y)H(X|Y = y) ,

where H(X|Y = y) is the entropy of the conditional distribution PX|Y=y. Note that lements y ∈ Y
with PY (y) = 0 do not participate to the sum.

Example. If Y is a copy of X , i.e., Y = X , then H(PX|Y=y) = 0 for all y ∈ Y and
thus H(X|Y) = 0. On the other hand, if X and Y are independent random variables, then
H(X|Y) =

∑
y∈Y PY (y)H(PX|Y=y) =

∑
y∈Y PY (y)H(PX) = H(X).

Proposition 2.2.5. We have H(X|Y) = H(XY)−H(Y).

8

Proof This is just writing PX|Y=y(x) = PXY (x,y)
PY (y)

in terms of entropies. We have

H(XY) = −
∑

x∈X ,y∈Y

PXY (x, y) log2(PXY (x, y))

= −
∑

x∈X ,y∈Y

PXY (x, y) log2(PY (y)PX|Y=y(x))

= −
∑

x∈X ,y∈Y

PXY (x, y) log2 PY (y)−
∑

x∈X ,y∈Y

PXY (x, y) log2 PX|Y=y(x)

= −
∑
y∈Y

PY (y) log2 PY (y)−
∑
y∈Y

PY (y)
∑
x∈X

PX|Y=y(x) log2 PX|Y=y(x)

= H(Y) +H(X|Y) .

ut
One can build a measure of correlations between sourcesX and Y out of the entropy, by asking

how much the entropy of X decreases when we learn Y .

Definition 2.2.6. The mutual information is defined by

I(X : Y) = H(X)−H(X|Y)

= H(X) +H(Y)−H(XY) .

Writing out the definitions, we get I(X : Y) =
∑

x∈X ,y∈Y PXY (x, y) log2
PXY (x,y)
PX(x)PY (y)

.

Example. If X = Y , then I(X : Y) = H(X). Also if X and Y are independent, I(X : Y) = 0.
To summarize the various entropic measures we have introduced, one usually represents them

pictorially in a Venn diagram (Figure 2.2.1)

I(X : Y) H(Y |X)H(X|Y)

H(X) H(Y)

H(XY)

Figure 2.1: Relation between the entropic measures we have introduced

The last definition we introduce here is for the relative entropy (also called Kullback-Leibler
divergence). It is a measure of closeness between distributions that is used in many settings. And
as we will see shortly, the various entropies we have introduced can be interpreted in terms of this
measure of closeness.

9

Definition 2.2.7. The relative entropy between two distributions P and Q on X is defined as

D(P‖Q) =

{
∞ if P (x) > 0 and Q(x) = 0 for some x ∈ X∑

x∈X P (x) log2
P (x)
Q(x)

otherwise.

Remark.

• If for some x, P (x) = 0, then we set P (x) log2 P (x)/Q(x) = 0. However, if there is an x
such that P (x) > 0 but Q(x) = 0, then we set the relative entropy to∞. This also shows
that there is no bound on the relative entropy that depends on |X | for example, it may be as
large as we want.

• Note that D(P‖P) = 0 and the relative entropy is not symmetric in its arguments, i.e.,
D(P‖Q) 6= D(Q‖P) in general.

• The relative entropy usually has this interpretation where if you take as a model distribution
Q but the distribution is actually P , then D(P‖Q) measures the difference to optimality
because of the wrong choice of distribution.

• We can write I(X : Y) = D(PXY ‖PX ×PY), H(X) = log |X | −D(PX‖UX), where UX is
the uniform distribution on X and H(X|Y) = log |X | −D(PXY ‖UX × PY).

ut
Proposition 2.2.8. For any distributions P and Q, we have

D(P‖Q) ≥ 0 ,

with equality if and only if P = Q.

Proof Let S = {x ∈ X : P (x) > 0}. Then

D(P‖Q) = −
∑
x∈S

P (x) log2

Q(x)

P (x)

≥ − log2

∑
x∈S

P (x)
Q(x)

P (x)

= − log2

∑
x∈S

Q(x)

≥ 0 ,

where we use the concavity of log2. To get the equality condition, both inequalities should be
saturated. From the saturation of the first inequality together with the strict concavity of log2, we
get that there is a c such that for all x ∈ S, P (x)

Q(x)
= c. Then, the saturation of the second inequality

says that
∑

x∈S Q(x) = 1. This implies that c = 1 and that P = Q. ut
By writing I(X : Y) = D(PXY ‖PX × PY), a direct corollary of Proposition 2.2.8 is the

nonnegativity of the mutual information which is also known as the subadditivity of the entropy.

Corollary 2.2.9. For any pair of random variables I(X : Y) ≥ 0. This inequality can also be
written as H(X) ≥ H(X|Y) or as H(X) +H(Y) ≥ H(XY).

Note that the property H(X) ≥ H(X|Y) is a very desirable one: having access to more
information (namely Y here) cannot increase the uncertainty of a given system (here X).

10

Chapter 3

Data compression

The kind of data we are usually interested in, e.g., a text written in some human or computer
language, or an image has a lot of structure. Indeed, in the natural representation of the data, we do
not expect all the possible values to occur. For example, the natural representation for an English
text is as a sequence of letters and spaces. In such a representation, we do not expect to see the
sequence of letters qwt to appear for example. Similarly, we do not expect all letters to appear as
many times. As such the set of possible English texts with n characters is much smaller than the
set of all possible sequences of n characters. Data compression is about finding a representation of
the data that tries to use as few bits as possible.

Our approach in this chapter will be to model the source we are interested as a random variable
X and determine the smallest number of bits needed to store X as a function of the distribution of
PX . Note that it is not easy to describe the distribution PX over English texts for example, but it
is often possible to consider simple distributions that are good enough approximation in that they
allow us to exploit at least some of the structure in an English text, even if not all. The easiest
model one could think of in this setting is to consider the empirical frequency of letters QA and
then consider PX = Q×nA . This is a very unrealistic model but one can obtain better and better
accuracy by considering blocks of b letters, or assuming that letters are generated according to a
Markov chain.

This chapter is heavily inspired by the lecture notes [1].

3.1 Setting
Given the data represented by the random variable X ∈ X we want to compress it into a bitstring
{0, 1}∗ with minimal length. There are multiple natural variants we consider.

1. In variable-length compression, different values of X might be compressed into bitstrings of
different lengths. Our aim is then to minimize the expected length of the compressed. Note
that it might be interesting to minimize other properties such as the median length or the
length of the shortest 99% possible values of the data. In general in this model, we require
the compression/decompression to be always correct.

2. In fixed-length compression, we fix a small allowable error probability ε and the objective is
to design a compressor C : X → {0, 1}k, where k is to be minimized.

11

3.2 Variable-length lossless compression

3.2.1 General compressors
Definition 3.2.1. A variable-length lossless compressor C for a source X ∈ X is a function
C : X → {0, 1}∗ such that there exists a decompressor D : {0, 1}∗ → X with D ◦ C = idX .

• Such a compressor is lossless as because it is possible to decompress perfectly.

• Note that the existence of D such that D ◦ C = idX is equivalent to C being injective.

• For x ∈ X , we say that C(x) is a codeword. The set {C(x) : x ∈ X} is called a code, so we
also use the words encoder/decoder for compressor/decompressor.

The length of the compressed data is given by the length of the bitstring |C(X)|, which is a
random variable. The expected length E {|C(X)|} is thus a natural quantity to minimize. In this
case, it is quite simple to determine an optimal compressor. For this, we order all the possible
bitstrings {0, 1}∗ in the shortlex order, i.e., if w ≤slex w′ if |w| < |w′| or |w| = |w′| and w ≤lex w′
and let wi the i-th bitstring in this order. For example, w1 = ∅ is the empty string, w2 = 0, w3 = 1,
w4 = 00, etc...

Theorem 3.2.2. Let PX be a distribution and x1, . . . , x|X | be such that PX(x1) ≥ · · · ≥ PX(x|X |).
Then C∗ defined by C∗(xi) = wi is an optimal compressor, i.e., E {|C∗(X)|} ≤ E {|C(X)|} for
any lossless compressor C. Moreover, we have

H(X)− log2(1 + blog2 |X |c) ≤ E {|C∗(X)|} ≤ H(X) . (3.1)

Proof Let C be a lossless compressor, then C is injective and so for k ≥ 0, we have

|{x ∈ X : |C(x)| ≤ k}| ≤
k∑
`=0

2` = 2k+1 − 1 .

As a result, we can upper bound the sum of the probabilities of the elements in {x ∈ X : |C(x)| ≤
k} by the sum of the largest 2k+1 − 1 probabilities:

∑
x∈X :|C(x)|≤k

PX(x) ≤
min(2k+1−1,|X |)∑

i=1

PX(xi) .

But now for the choice of compressor C∗, this inequality becomes an equality: the elements
x1 . . . x2k+1−1 are all assigned to bitstrings of length at most k. Note that the case when
|X | < 2k+1 − 1, both sides of the equality evaluate to 1 we have that

∑
x∈X :|C∗(x)|≤k PX(x) =∑min(2k+1−1,|X |)

i=1 PX(xi) = 1. As a result,∑
x∈X :|C(x)|≤k

PX(x) ≤
∑

x∈X :|C∗(x)|≤k

PX(x) .

12

Ni Luh Dewi Sintiari

This implies that

E {|C∗(X)|} =
∞∑
k=0

P {|C∗(X)| > k}

=
∞∑
k=0

∑
x∈X :|C∗(x)|>k

PX(x)

=
∞∑
k=0

1−
∑

x∈X :|C∗(x)|≤k

PX(x)

≤ E {|C(X)|} .

To prove (3.1), we observe that |C∗(xi)| = blog2(i)c. Note also that PX(xi) ≤ 1−
∑i−1

j=1 PX(xj) ≤
1− (i− 1)PX(xi) which implies that PX(xi) ≤ 1

i
.

E {|C∗(X)|} =

|X |∑
i=1

PX(xi)|C∗(xi)| ≤
|X |∑
i=1

PX(xi) log2(i)

= −
|X |∑
i=1

PX(xi) log2

(
1

i

)

≤ −
|X |∑
i=1

PX(xi) log2(PX(xi)) = H(X) .

To prove the lower bound in (3.1), let us write for short L = |C∗(X)|. Note that L ∈
{0, 1, . . . , blog |X |c}. Also note that L is a deterministic function of X and as such H(X,L) =
H(X) +H(L|X) = H(X). As a result,

H(X) = H(X,L) = H(X|L) +H(L)

≤
∞∑
k=0

PL(k)H(X|L = k) + log(1 + blog |X |c)

≤
∞∑
k=0

PL(k)k + log(1 + blog |X |c)

= E {L}+ log(1 + blog |X |c) ,

where we used in the second inequality the fact that conditioned on L = k, C∗(X) ∈ {0, 1}k and
as C∗ is injective, X takes at most 2k possible values when we condition on L = k which implies
H(X|L = k) ≤ k. ut

13

3.2.2 Uniquely decodable and prefix-free compressors
We determined the optimal variable-length general compressor C∗. This was very simple to
construct, just order the values x ∈ X in decreasing order and use up the short bitstrings in shortlex
order. We now look at a specific class of compressor that can have a fast encoding and decoding
properties. Usually, we want to encode data which is a concatenation of multiple symbols (could
be letters, words, pixel colors, etc...) so it makes sense to look look at compressors which compress
the data symbol by symbol.

In fact, for a compressor C on the alphabet A, we can naturally define its extension C+ on
A+ = ∪n≥1An by C+(a1 · · · an) = C(a1) · C(a2) · · ·C(an), where · denotes the concatenation.
What condition do we need on C so that C+ is a lossless compressor? C needs to be at least
injective, but this might not be enough to guarantee that C+ is injective. For example, if C(a) = 0,
C(b) = 010 and C(c) = 01, then C+(b) = C+(ca) = 010. Note that we chose the letter A
for “alphabet” here instead of X to suggest that we want to encode a concatenation of multiple
symbols from A.

Definition 3.2.3 (Uniquely decodable compressor). A compressor C : A → {0, 1}∗ is said to be
uniquely decodable if its extension C+ is injective.

It might not be easy to check that a compressorC is uniquely decodable. But a simple sufficient
condition for a compressor to be uniquely decodable is for it to be prefix-free.

Definition 3.2.4 (Prefix-free compressor). C is a prefix-free compressor if no codeword is a prefix
of any other.

Observe that we often say prefix-free code as this property depends only on the code {C(a) :
a ∈ A}. Note that if C is prefix-free then it is uniquely decodable, in fact one can construct
a simple decompressor as follows. To decompress C(a1) · · ·C(an), we note that C(a1) is a
unique prefix of C(a1) · · ·C(an) which is a valid codeword, which means one can find it and
then keep decoding each symbol ai sequentially. Note that this decompression algorithm is done
in a streaming way, i.e., there is no need to read the whole compressed bitstring to get a1 for
example. This is a nice property of prefix-free codes.

An example of a prefix-free code for A = {a, b, c} is given by C(a) = 0, C(b) = 10,
C(c) = 110. But not every uniquely decodable codes needs to be prefix-free. In fact, if C(a) = 10,
C(b) = 11 and C(c) = 110. This code can be decoded as follows: if we see a 10 then we decode
to a, if we see 11 we look at the next bit: if it is a 1, then we decode the 11 to b, else if it is a
0, then we decode the 110 to c. So uniquely decodable codes are strictly speaking more general
but, as we will see in Proposition 3.2.7, not in a very useful way: it is possible to transform any
uniquely decodable compressor into a prefix-free one while keeping the length of the encodings of
each symbol the same.

The class of uniquely decodable are a natural subclasses of lossless codes that have the
advantage that they can be used to encode an arbitrary sequence of symbols fromAwithout adding
any delimiter. This is really not the case for general compressors, for example the empty string ∅
would be an encoding of some x ∈ X but also of any number of copies of x gets compressed to ∅.

The question we address now is given a distribution PA onA, if we restrict ourselves to prefix-
free codes how to find a code with minimum expected length? And can we relate this minimum
length to the entropy of the source? The following theorem only considers prefix-free codes and

14

not general uniquely decodable codes, but Proposition 3.2.7, which comes later, will show that the
optimal uniquely decodable code can be assumed to be prefix-free.

Theorem 3.2.5. Let A ∈ A be a random variable. The Huffman algorithm computes in
O(|A| log |A|) a prefix-free compressor CH : A → {0, 1}∗ that has an optimal expected length.

Moreover, this optimal expected length satisfies

H(A) ≤ E {|CH(A)|} < H(A) + 1 . (3.2)

In order to prove this result, a key observation is a correspondence between prefix-free codes
and binary trees. In fact, a binary tree naturally defines a prefix-free code in the following way.
First, we label the outgoing edges of a node by {0, 1}, for example the left edge is labeled 0 and the
right edge labeled 1. This allows us to assign a bitstring s(u) to every node u by considering the
path from the root to u. The set of bitstrings S = {s(u) : u is a leaf} assigned the leaves of such a
tree is a prefix-free code. In fact, if c = s(u) and c′ = s(u′) are codewords such that c is a prefix of
c′, then by construction of the tree u′ should be a descendent of u. As u and u′ are supposed to be
leaves, this implies that u = u′ and thus c = c′. Conversely, given a prefix-free code S ⊂ {0, 1}∗,
we can construct a binary tree T in the same way such that S = {s(u) : u is a leaf of T}. See
Figure 3.2.2 for an illustration. Note that the length of a given codeword corresponds to the
depth of the corresponding leaf in the tree. As such, the problem of finding an optimal prefix-free
compressor can be formulated as follows. Given a distribution PA on the set A, find a binary tree
T and a function C from A to the leaves of T such that

∑
a∈A PA(a) · depth(C(a)) is minimized.

There is a beautiful and very efficient algorithm due to Huffman to find such a binary tree that will
be seen in the tutorial and homework.

0 1

0 1

0 1

000 001

01

1

Figure 3.1: A binary tree corresponding to the code S = {000, 001, 01, 1}.

We now focus on proving the second statement in Theorem 3.2.5, which is an estimate of the
expected minimum length in terms of the entropy of the source H(PA). In order to do this, a very
useful tool is the following property which characterizes the set of length of a prefix code.

Lemma 3.2.6 (Kraft inequality). For any prefix-free compressor C with codewords of lengths
`a = |C(a)| for a ∈ A, we have ∑

a∈A

2−`a ≤ 1 . (3.3)

15

Ni Luh Dewi Sintiari

Ni Luh Dewi Sintiari

Ni Luh Dewi Sintiari

Ni Luh Dewi Sintiari

Ni Luh Dewi Sintiari

Ni Luh Dewi Sintiari

Conversely, given a set of lengths {`a}a∈A satisfying Kraft’s inequality, we can construct a prefix-
free compressor C : A → {0, 1}∗ with |C(a)| = `a.

Proof Let us start with a prefix-free compressor C and construct the corresponding binary tree.
Then `a is exactly the depth of the leaf that is assigned the bitstring C(a). But it is well-known that
for a binary tree T , we have

∑
u∈V (T) 2−depth(u) ≤ 1. One way of seeing this is by completing the

tree into a complete binary tree of height `max = maxa `a and considering the nodes at depth `max.
Then for the codeword C(a), we have 2`max−`a descendants at depth `max. Taking all such nodes
for every a ∈ A, we get a total of

∑
a∈A 2`max−`a nodes at depth `max. But on the other hand, there

are at most 2`max at depth `max. This gives inequality (3.3).
To prove the converse, we order the elements of A as a1, . . . , a|A| so that `a1 ≤ · · · ≤ `a|A| .

We define C(ai) to be the first `ai bits in the binary expansion of bi =
∑i−1

j=1 2−`aj . These numbers
bi lie in the interval [0, 1) using the condition (3.3). For example, C(a1) = 0`a1 where 0` is a
concatenation of ` zeros, and C(a2) = 0`a1−110`a2−`a1 etc... Let us show that C is prefix-free.
Take two codewords C(ai) and C(ak) with i < k. Note that bk − bi =

∑k−1
j=i 2−`aj ≥ 2−`i . Note

that any codeword that has C(ai) as a prefix is a binary expansion of a number that is at most
bi +

∑maxa `a
p=`ai+1 2−p < bi + 2−`i . As a result, C(ai) cannot be a prefix of C(ak) and this concludes

the proof that C is prefix-free.
ut

Using this lemma, the problem of finding an optimal compressor is equivalent to the following
optimization program with variables `a ∈ N+ for a ∈ A:

minimize
∑
a∈A

PA(a)`a (3.4)

subject to `a ∈ N+ for a ∈ A (3.5)∑
a∈A

2−`a ≤ 1 . (3.6)

As you probably know, optimization programs with integrality constraints are often difficult
algorithmically. However, this one turns out to have an efficient algorithm: Huffman’s algorithm
(to be seen in the tutorials). Using this formulation, it is relatively easy to prove the inequality (3.2).
Proof [of Theorem 3.2.5] Note that using Lemma 3.2.6, we have E {|CH(X)|} is equal to the
value of the maximization in (3.4). As such, it suffices to find an upper and lower bound on the
value of (3.4).

Let us start with the lower bound. For that we relax the constraint that `a ∈ N+ into just
`a ∈ R+ (or just R even as the fact that `a ≥ 0 is already implied by the other constraint). We now
simply rename the variables to Q(a) = 2−`a . The program becomes

minimize −
∑
a∈A

PA(a) log2Q(a) (3.7)

subject to
∑
a∈A

Q(a) ≤ 1 . (3.8)

We can interpret Q as a subnormalized distribution. The objective function is supposed to remind

16

Ni Luh Dewi Sintiari

Ni Luh Dewi Sintiari

Ni Luh Dewi Sintiari

us of the relative entropy between PA and the subnormalized distribution Q. In fact,

−
∑
a∈A

PA(a) log2Q(a) = −
∑
a∈A

PA(a) log2 PA(a) +
∑
a∈A

PA(a) log2 PA(a)−
∑
a∈A

PA(a) log2Q(a)

= H(PA) +D(PA‖Q) ,

where we slightly generalized the definition of the relative entropy to subnormalized distributions.
Remember that our objective was to show thatH(PA) is an upper bound on the minimum expected
length. For that it only remains to show that for a subnormalized distribution Q, D(PA‖Q) ≥ 0.
For that, let Q′(a) = Q(a)∑

aQ(a)
. Then we have

D(PA‖Q) =
∑
a

PA(a) log2 PA(a)−
∑
a

PA(a) log2(Q′(a) ·
∑
a

Q(a))

=
∑
a

PA(a) log2 PA(a)−
∑
a

PA(a) log2Q
′(a)−

∑
a

PA(a) log2(
∑
a

Q(a))

= D(PA‖Q′)− log2(
∑
a

Q(a))

≥ 0 ,

using the fact that the relative entropy between distributions is always nonnegative and that Q is
subnormalized. Observe that we actually showed that the value of the relaxation (3.7) is exactly
equal to H(PA): it suffices to take Q = P .

The proof of this lower bound gave us a good hint for which values of `a we should be choosing:
`a = − logPA(a). And in fact, we showed that if these values of `a turn out to be integers, then
we get an minimum expected length of H(PA) exactly. However, in general, − logPA(a) are not
integers, so we cannot always make this choice to find a good compressor.

To prove the upper bound, the idea should now be clear. We fix `a = d− log2 PA(a)e. Then
we have

∑
a 2−`a ≤

∑
a 2− log2 PA(a) = 1 so the constraint is satisfied. In addition, the objective

function take the value
∑

a PA(a) d− log2 PA(a)e <
∑

a PA(a)(− log2(PA(a))+1) ≤ 1+H(PA).
ut

To conclude our study of uniquely decodable codes, we show next that cannot achieve a smaller
expected length than the best prefix code. Not that in order to show this, it is sufficient to show that
any uniquely decodable code still satisfies the inequality (3.3).

Proposition 3.2.7. For any uniquely decodable compressor C with codewords of lengths `a =
|C(a)| for a ∈ A, we have ∑

a∈A

2−`a ≤ 1 .

Proof Let us define for a string an = a1 . . . an ∈ An, C(an) = C(a1) · · ·C(an) and thus the
length `a1...an = `a1 + · · ·+ `an . Then we have(∑

a∈A

2−`a

)n

=
∑
an∈An

2−`an

=
n`max∑
m=1

Nm2−m ,

17

Ni Luh Dewi Sintiari

Ni Luh Dewi Sintiari

Ni Luh Dewi Sintiari
because
3.7 is equals to H(P_A) + D(P_A || Q) ; with D(P_A || Q) \geq 0,
and 3.7 is a minimization problem

where Nm = |{an ∈ An : `an = m}|. As C is uniquely decodable C(an) should give different
bitstrings for different values of an. As a result, Nm ≤ 2m. This implies that(∑

a∈A

2−`a

)n

≤ n`max .

So for any n ≥ 1, we have
∑

a∈A 2−`a ≤ (n`max)
1
n → 1 as n→∞. ut

So we have now seen that if we restrict ourselves to the natural class of uniquely decodable
codes, we can find the one which minimizes the expected length efficiently and moreover, this
minimum expected length lower bounded by H(PA), which can be achieved if − log2 PA(a) are
all integers, and is upper bounded by H(PA) + 1. If we compare this to the completely general
compressor we studied in Section 3.2.1, we see that we are loosing at most 1+log2(1+dlog2 |A|e)
in order to be able to encode multiple letters without needing a delimiter.

3.3 Fixed-length almost lossless compression
We now again take our source X ∈ X but we would like to compress it into just k bits, i.e.,
C : X → {0, 1}k. In fact, it might not be desirable for some applications to have very different
encoding lengths for different files. In this case, if we require the compression to be perfectly
lossless, then we have to take k ≥ log |X |. However, we might make significant gains in terms of
space by allowing a small error probability that we’ll call δ.

Definition 3.3.1. A fixed-length compressor for a source X ∈ X of length ` is a function
C : X → {0, 1}`.

It has error probability at most δ if there exists a function D : {0, 1}` → X such that

P {D ◦ C(X) 6= X} ≤ δ .

Note that our objective now is to understand the minimum ` for some small δ. We introduce a
notation for the best compressor that achieves an error probability ≤ δ:

`opt(X, δ) = min{` : there exists a length ` compressor for X with error probability δ} .

It should be quite intuitive how to find an optimal encoder. Construct the set S∗δ ⊆ X
in the following way. Sort the elements by their probabilities X = {x1, . . . , x|X |} so that
PX(x1) ≥ · · · ≥ PX(x|X |). Then for i = 1 to |X | keep adding xi to Sδ until

∑
x∈S∗δ

PX(x) ≥ 1−δ.
Once this is satisfied, we stop.

Theorem 3.3.2. The size of the set Sδ determines `opt:

`opt(X, δ) = dlog2 |S∗δ |e .

Proof We start by proving the inequality “≤”. Using the notation above, let S∗δ = {x1, . . . , xk}
and ` = dlog2 |S∗δ |e. Note that k ≤ 2`. We define C as follows.

C(xi) =

{
bin`(i− 1) if i ≤ k

0` if i > k ,

18

where bin`(i) is the binary string of length ` representing the integer i ∈ {0, . . . , 2` − 1}. Then
defining D(b) = xi with i− 1 the number in {0, . . . , 2` − 1} whose binary representation is b.

P {D ◦ C(X) = X} ≥
k∑
i=1

PX(xi) ≥ 1− δ .

For the converse, let C be a compressor with length ` and error probability ≤ δ. Then consider the
set Sδ = D({0, 1}`). Then ∑

x∈Sδ

PX(x) = P
{
X ∈ D({0, 1}`)

}
≥ P {X = D ◦ C(X)}
≥ 1− δ .

But among the sets with total probability at least 1− δ, S∗δ is the smallest one, so |S∗δ | ≤ |Sδ| ≤ 2`.
This implies that ` ≥ log2 |S∗δ | and as ` is an integer ` ≥ dlog2 |S∗δ |e. ut
Remark. Unlike the previous sections where we could always relate the minimum length
(approximately) to the Shannon entropy of the source H(X), here `opt(X, δ) is characterized by
different quantity. In fact the term log2 |S∗δ | can be quite different from H(X). For example, for
δ = 0, we can take the distribution on {0, . . . ,m} defined by PX(0) = 1− ε and PX(i) = ε/m for
i ∈ {1, . . . ,m}. Then log2 |S∗0 | = log2(m+ 1), but H(X) = −(1− ε) log(1− ε)−m · ε

m
log ε

m
=

h2(ε) + ε logm, which can be much smaller than log2(m+ 1).
Even if it is not the Shannon entropy, the quantity log2 |S∗δ | can still be called an entropic

measure and indeed it has a name: it is called the Hartley entropy, or more precisely the smoothed
version. The Hartley entropy can be defined by

H0(X) = log2 |supp(PX)| .

Note that this shares some properties with the Shannon entropy H(X). For example, H(X) = 0 if
and only if X takes only one value and H(X) = log2 |X | when X is uniformly distributed. Note
that using the concavity of the logarithm, we always have

H(X) =
∑

x∈supp(PX)

PX(x) log2

1

PX(x)
≤ log2 |supp(PX)| = H0(X) .

But as shown above there can be a very large gap between the two. H0(X) naturally corresponds
to the number of bits needed to store X with zero probability of error. However, if we allow an
error probability of δ, we can change the distribution PX by δ in order to reduce it’s support: we
get the smoothed version:

Hδ
0(X) = min

Sδ:
∑
x∈Sδ

PX(x)≥1−δ
log2 |Sδ| .

Note that the smoothed Hartley entropy can be very different from the Hartley entropy itself. For
an extreme example, we can have for X ∈ {0, 1, . . . ,m} with X = 0 with probability 1 − δ and
X = iwith probability δ/m, we haveH0(X) = log2(1+m) butHδ

0(X) = 0. We have also seen an

19

Ni Luh Dewi Sintiari

Ni Luh Dewi Sintiari

example in the first homework. If X = X1, . . . , Xn is a bitstring of length n with Xi independent
and with distribution Bernoulli p, then H0(X) = n but Hδ

0(X) ≈ h2(p)n. ut
Recall that the Shannon entropy H(X) is the expectation of the surprisal of X , which is the

random variable hX(X) = − log2 PX(X). It turns out that one can relate `opt(X, δ) not to the
expectation of the random variable hX(X) but rather another property of it, given in the next
proposition. Before getting into the statement, let us try to familiarize with the surprisal random
variable hX(X) with some examples.

• If X is uniformly distributed on X , then − log2 PX(x) = log2 |X | for all x ∈ X . So hX(X)
is the constant random variable equal to log |X | (notice also that in this case, the entropy is
log |X |).

• If X = {1, . . . , 2t} with PX(x) = 3
4t

for x ∈ {1, . . . , t} and PX(x) = 1
4t

for t ∈
{t + 1, . . . , 2t}. Then hX(X) will take the value log 4t

3
with probability 3

4
and log t

4
with

probability 1
4
.

• Another example is for X = {1, . . . , t + 1} and PX(i) = 2−i for i ∈ {1, . . . , t − 1} and
PX(t) = PX(t + 1) = 2−t. In this case, the random variable hX(X) takes value i with
probability 2−i and value t with probability 2−t+1.

The next proposition shows that we can relate `opt(X, δ) to the smallest ` such that the total
probability above ` is at most δ. So this property is more about the tails of hX(X) than about its
expectation.

Proposition 3.3.3.

`opt(X, δ) ≤ min{` ∈ N+ : P {hX(X) > `} ≤ δ} . (3.9)

Moreover, for any τ > 0,

`opt(X, δ) ≥ min{` ∈ N+ : P {hX(X) > `+ τ} − 2−τ ≤ δ} . (3.10)

Note that the statement in (3.10) is referred to as an achievability result as it gives a way
of constructing a compressor. On the other hand an inequality of the type (3.10) is known as a
converse bound as it gives a limitation on the length that can be achieved by compressors.
Proof For the upper bound on `opt, let ` satisfy P {hX(X) ≤ `} ≤ δ. Then we construct
S = {x ∈ X : PX(x) ≥ 2−`}. Then we have |S| ≤ 2`. In addition, P {X ∈ S} =
P
{
PX(X) ≥ 2−`

}
= P {− log2 PX(X) ≤ `} ≥ 1−δ using the property of `. So we can compress

the elements of the set S with no error and so `opt(X, δ) ≤ `.
For the lower bound, letC be a compressor with error probability≤ δ and length ` = `opt(X, δ).

Define S = {x ∈ X : D(C(x)) = x}. Then as S ⊆ D({0, 1}`), |S| ≤ 2`. By the assumption that
the error probability is at most δ, we have P {X ∈ S} ≥ 1− δ. The idea now is that because S is
a set with total probability 1− δ and having at most 2` elements, the elements x ∈ S cannot have

20

Ni Luh Dewi Sintiari

a probability much smaller than 2−`. More precisely,

1− δ ≤
∑
x∈S

PX(x)

≤
∑

x∈X :PX(x)≥2−`−τ

PX(x) +
∑

x∈S:PX(x)<2−`−τ

PX(x)

≤ P {hX(X) ≤ `+ τ}+ 2`2−`−τ

= 1−P {hX(X) > `+ τ}+ 2−τ .

This implies that ` satisfies the condition in the right hand side of (??). ut

A sufficient condition for a random variable to be with high probability close to its expectation?
Being a sum of independent random variables. For hX(X), this is the case if the source is
a concatenation of independent symbols, also called a memoryless source. We assume Xn =
X1 . . . Xn with Xi independent and identically distributed random variables in A.

Theorem 3.3.4 (Shannon’s source coding theorem). Let Xn = X1 . . . Xn be an sequence of
independent and distributed as X ∈ A. Then for any δ ∈ (0, 1),

lim
n→∞

`opt(Xn, δ)

n
= H(X) .

Proof We use Proposition 3.3.3 applied to a memoryless source. For that we need to get a handle
on P {hXn(Xn) > `}. Recall that hXn(Xn) = − log2 PXn(Xn) and using the iid assumption this
gives

hXn(Xn) =
n∑
i=1

− log2 PX(Xi) .

As such we have a sum of iid random variables each one having an expectation that is equal to
H(X). We thus know from the weak law of large numbers that such a random variable is very
close to its expectation. The expectation E {hXn(Xn)} = nE {hX(X1)} = nH(X). For the sake
of completeness, we give a complete proof not relying on the weak law of large numbers. We use
Chebychev’s inequality

P {|hXn(Xn)− E {hXn(Xn)} | ≥ t} ≤ Var {hXn(Xn)}
t2

(3.11)

=
n ·Var {hX(X1)}

t2
. (3.12)

Note that in our setting X takes finitely many values so Var {hX(X)} <∞. As a result, applying

this inequality with t =
√

nVar{hX(X)}
δ

we get

P

{
hXn(Xn) > nH(X) +

√
nVar {hX(X)}

δ

}
≤ δ .

21

Ni Luh Dewi Sintiari

So `opt(Xn, δ) ≤ nH(X) +
√

nVar{hX(X)}
δ

. By taking the limit as n → ∞, this proves that the
entropy is an upper bound on the asymptotic rate of compression.

For the lower bound, let α > 0 parameter we choose later. Then take t =
√

nVar{hX(X)}
α

in (3.11) and get

P

{
hXn(Xn) ≤ nH(X)−

√
nVar {hX(X)}

α

}
≤ α .

As a result, taking ` = nH(X)− 2
√

nVar{hX(X)}
α

and τ =
√

nVar{hX(X)}
α

. We now choose α > 0

small enough so that 1 − δ > α + 2−τ . This gives us `opt(Xn, δ) ≥ nH(X) − 2
√

nVar{hX(X)}
α

,
which leads to the desired result by taking the limit n→∞. ut

Random coding: done in TD

In order to prepare for more complex tasks, it is useful to give another proof of the achievability
result in (3.10). In fact, it is even going to give us a result that is weaker than the (3.10) but it
is nonetheless a good warm-up for the technique used in Shannon’s noisy coding theorem. This
technique is the probabilistic method: the compressor C will be chosen at random and remarkably
we will show that it can have length roughly the same as what we obtained in (3.10) by choosing
the set of symbols we compress as the ones with probability ≥ 2−`.

Proposition 3.3.5. For any τ > 0.

`opt(X, δ) ≤ min{` ∈ N+ : P {hX(X) > `− τ}+ 2−τ ≤ δ} . (3.13)

Proof Let τ > 0 and let ` be such that P {hX(X) > `− τ} + 2−τ ≤ δ. Our objective is to
construct a compressor with length ` and error probability at most δ. Let us start by fixing a simple
decompressor. We define D(y) = x if there is a unique x such that C(x) = y and PX(x) ≥ 2−`+τ .
If no such x exists or if it is not unique thenD(y) is set to an arbitrary fixed x0 ∈ X . Let us analyze
the error probability of this compressor-decompressor pair. For a given x, there are two possible
reasons it can get decompressed incorrectly. First, if PX(x) < 2−`+τ and second if PX(x) ≥ 2−`+τ

but there is another x′ 6= x such that C(x) = C(x′) and PX(x′) ≥ 2−`+τ . More precisely, we can
write

P {D(C(X)) 6= X} =
∑
x∈X

PX(x)P {D(C(x)) 6= x|X = x}

≤
∑
x∈X

PX(x)

(
1PX(x)<2−`+τ +

∑
x′ 6=x

1C(x)=C(x′),PX(x′)≥2−`+τ

)
.

The first term does not depend on the choice of C and it corresponds to P {hX(X) > `− τ}.
Now the idea will be to choose the codewords C(x) uniformly at random from {0, 1}` so that in
expectation the second term is small. In fact if x 6= x′, then E

{
1C(x)=C(x′)

}
= 1

2`
. As such the

second term is in expectation over the choice of codewords {C(x)}x∈X given by∑
x∈X

PX(x)
∑

x′ 6=x:PX(x′)≥2−`+τ

1

2`
≤
∑
x∈X

PX(x) · 2`−τ

τ
= 2−τ .

22

ut

So far, we have studied the fundamental limit of compression in quite generic scenarios, that
do not necessarily correspond to the compression tasks we would like to perform in practice. In
fact,

1. The sources we are interested inX are composed of a long stream of symbols (for example in
a text is composed of letters) but the symbols are not independent. For example, given a text
that starts with informatio, it is extremely likely that the next letter is an n. The context
can thus be used in order to improve the compression. To take the context into account,
one could cut the stream into sufficiently large blocks of b symbols each, and then say that
the blocks are independent and identically distributed. This will certainly work better than
assuming that the symbols are independent. In fact, an even better model would be a Markov
model where the probability of the n-th symbol only depends on the b− 1 symbols coming
before it. However, note that a general distribution over a block of b letters is given by 26b

parameters, which very quickly becomes prohibitive.

2. Another assumption we made is that we have full knowledge of the distribution of the source
X . This is unrealistic for several reasons. As mentioned above, even the describing the
distribution might be very costly. In addition, we would like to build compressors that work
for a wide variety of inputs and it should be able to “learn” what are the specifics of the
stream it is currently compressing.

3.4 Universal compression
In this section, we consider a stream Xn = X1 . . . Xn of n symbols with Xi ∈ X . We do not have
access to the distribution PXn .

3.4.1 Arithmetic codes
The idea here is to build a probabilistic model for the symbols while we are reading the stream. For
example, we could start with the model P1(a) = 1

|X | for all a ∈ X which gives the same probability
for every symbol. Then assuming we have seen the symbols x1 . . . xi−1, we could define the model
for step i by

Pi(a|x1 . . . xi−1) =
|{j ∈ {1, . . . , i− 1} : xj = a}|+ 1

i− 1 + |X |
. (3.14)

Observe that this is a valid distribution over elements a ∈ X and the idea is to give more weight
to the symbols a that have occurred more often. Then, naturally, the larger the weight given to a
symbol, the fewer bits we would like to use for that symbol.

To describe the encoding strategy, it is very useful to think of it in two steps. In the first step
we are going to assign our stream xn ∈ X n to an interval I(xn) ⊆ [0, 1). The second step would
be to map the interval I(xn) into a bitstring C(xn).

23

From xn to I(xn) The idea is that the empty stream corresponds to the full interval I(∅) = [0, 1)
and then when we read the symbol x1, we take a subinterval I(x1) of the current interval I(∅) with
length proportional to P1(x1). More generally, when reading xi at step i, we define I(x1 . . . xi) to
be a subinterval of I(x1 . . . xi−1) with length proportional to Pi(xi|x1 . . . xi−1).

More precisely, let us index the symbols of X = {a1, . . . , a|X |} in an arbitrary way. We
define I(∅) = [0, 1). Then given I(x1 . . . xi−1) = [ui−1, vi−1), we compute I(x1 . . . xi) as follows.
Suppose xi = ak for some k ∈ {1, . . . , |X |}. The length of the subinterval of I(x1 . . . xi−1) that
we should take when adding xi should be proportional to Pi(xi|x1 . . . xi−1). The interval will be
defined in terms of α =

∑k−1
p=1 Pi(a

p|x1 . . . xi−1) and β =
∑k

p=1 Pi(a
p|x1 . . . xi−1) by

I(x1 . . . xi) = [ui, vi) with ui = ui−1 + (vi−1 − ui−1) · α and vi = ui−1 + (vi−1 − ui−1) · β .
(3.15)

From I(xn) to E(xn) In this step, we take the interval I(xn) and map it to a bitstring. Note first
that for xn 6= x̃n two streams in X n, the intervals I(xn) and I(x̃n) are disjoint. In other words,
given a real number y ∈ [0, 1), it is in at most one interval I(xn) (actually exactly one interval) for
some xn ∈ X n. So in order to encode an interval I(xn) it suffices to take a number of the form
0.y1 . . . y` ∈ I(xn) for bits yj ∈ {0, 1} trying to have ` as small as possible. Writing again the
interval I(xn) = [un, vn), one possible choice is

C(xn) =

⌈
2`un

⌉
2`

where ` ∈ N is the smallest satisfying

⌈
2`un

⌉
2`

< vn . (3.16)

Note that we are naturally identifying rational numbers of the form k
2`

for k ∈ {0, . . . , 2`− 1} with
bitstrings of length `.

Decompressor Now that we have defined the compression function, we need to check that it
is possible to decompress with no error. Given y ∈ {0, 1}m, we first see it as rational number
in [0, 1) with binary representation 0.y1 . . . ym. We construct the intervals I(a) for every possible
a ∈ X . Let x1 be the unique symbol such that y ∈ I(x1). Then, at step i, as we have determined
x1 . . . xi−1, we can compute Pi(a|x1 . . . xi−1) and thus can determine the intervals I(x1 . . . xi−1a)
for any a ∈ X . We set xi to be the unique symbol such that y ∈ I(x1 . . . xi). Note that this
decompression algorithm can actually output an infinite stream x1x2 The compressed stream
is a prefix of this infinite stream. To get the compressed stream exactly we should either know its
length n in advance (or encode it separately) or have an end-of-file symbol to tell us when to stop.

Computational aspects We briefly comment on the fact that the compression and decompres-
sion computations can be performed quite efficiently. For example, to compute the probabilities
given by the model in (3.14), it suffices to keep a counter for the number of times we have seen
each symbol. Then the interval can be computed very efficiently on the fly via (3.15). Then to
determine the bitstring C(xn), a simple rounding procedure is sufficient as shown in (3.16).

3.4.2 Lempel-Ziv coding (TODO)
The Lempel-Ziv algorithm does not build a probabilistic model for the stream but rather, it is based
on a dictionary of words that already appeared. Then, we replace the occurrence of that word with

24

its index in the dictionary. There are multiple variants, we describe a simple one here.
See https://www.cs.cmu.edu/˜guyb/realworld/compression.pdf for a nice

introduction to data compression with discussion of practical aspects.

3.5 Lossy compression (TODO)
The compression algorithms we looked at were lossless or almost lossless in the sense that it
is possible to decompress perfectly (or with probability close to 1). In lossy compression, the
original data cannot be recovered. But this does not mean that it is completely useless. In fact, for
structured data, such as images, it is often enough to be able to recover an image that looks the
same to a human eye. In particular, one might obtain very significant space savings by eliminating
imperceptible noise that has large entropy.

25

https://www.cs.cmu.edu/~guyb/realworld/compression.pdf

Chapter 4

Noisy channel coding

4.1 Basic setting
In this chapter, we consider a channel with input alphabet X and output alphabet Y . By default,
the sets X and Y are going to be finite sets. The channel is described by a conditional probability
distribution that we write W . For x ∈ X and y ∈ Y , W (y|x) is the probability that the output
of the channel is y when the input is x. When using random variables, we write WY |X for W
to indicate that X is the input random variable and Y is the corresponding output. The simplest
example of channel is the identity channel for which X = Y and W (y|x) = 1x=y.

Our task is to communicate reliably over this noisy channel. Note that we assume we have full
knowledge of the channel W . We can model this question by designing an encoding function E
and a decoding function D that allows us to send M messages.

TODO: Figure
We introduce a useful shorthand notation: [M]

def
= {1, . . .M}.

Definition 4.1.1. An M -code for a channel W is a pair of functions E : [M] → X and
D : Y → [M]. The set {E(1), E(2), . . . , E(M)} is called a codebook and an E(s) for s ∈ [M] is
called a codeword.

A property of interest of a given M -code is its error probability. The main notion of error
probability we consider is the average error probability for the M -code (E,D) is given by

Perr(W,E,D) = 1− 1

M

M∑
s=1

∑
y∈Y

W (y|E(s))1D(y)=s .

It is often more intuitive to reason in terms of random variables so we introduce the probability
space (Ω,P(Ω),P), with Ω = [M]×X × Y × [M] and P defined by

P {(s, x, y, ŝ)} =
1

M
1x=E(s)W (y|x)1ŝ=D(y) , (4.1)

for any (s, x, y, ŝ) ∈ Ω. As Ω is discrete, this completely specifies P. We then naturally define
the random variables S,X, Y, Ŝ. For example, S : Ω → [M] with S(s, x, y, ŝ) = s and similarly
for X, Y, Ŝ. In words, this corresponds to taking a message S ∈ [M] uniformly at random, and

26

then defining X = E(S), the Y is the output of the channel for input X and Ŝ = D(Y). In this
notation, we have

Perr(W,E,D) = P
{
S 6= Ŝ

}
.

There are some other error probabilities one might be interested in such as

• We can ask for a worst case criterion in the sense that we look at the message s for which
the error probability is the largest Perr,max(W,E,D) = maxs∈[M] P

{
Ŝ 6= s|S = s

}
• When the message set is the set of bitstrings of lengths k, i.e., S ∈ {0, 1}k, the bit error

probability may be defined as Perr,bit(W,E,D) = 1
k

∑k
i=1 P

{
Ŝi 6= Si

}
.

Naturally, we would want M to be as large as possible and Perr to be as small as possible but
there is a tension between them. Our objective is to understand this tradeoff between M and Perr.
In particular, if we fix an acceptable error probability δ, how large can we makeM? For that define

M opt(W, δ) = max{M : there is an M -code (E,D) with Perr(W,E,D) ≤ δ} .
Note that M is a number of messages, so dlog2M

opt(W, δ)e is the number of bits that can be sent
with error probability at most δ.

Even though we are going to deal with the question in the case of a general channel, there is a
very important special case to keep in mind. This corresponds to taking a channel W with input X
and output Y , such as the bit channel that flips a bit with probability f , and taking n independent
copies of W . This gives a channel which we call W n with input X n and output Yn defined by

W n(y1 . . . yn|x1 . . . xn) = W (y1|x1)W (y2|x2) · · ·W (yn|xn) .

Now we are interested in the number of bits we can send per use of the channel, when n becomes
large. In particular we are interested in limn→∞

log2M
opt(W,δ)
n

for small values of δ. We will see it
is possible to characterize precisely this limit.

Examples
1. We start with the identity channel, with inputX = [N] and outputY = [N],W (y|x) = 1x=y.

In this case, it is easy to exactly determine the tradeoff between M and Perr. In fact, for
M ≤ N , we can consider an M -code given by E(s) = s for all s ∈ [M] and D(y) = y for
all y ∈ [M] and D(y) = 1 if y > M . In this case, Perr(W,E,D) = 0.

If M > N , intuitively, we want to say that Perr > 0. For that, let us write

Perr = 1− 1

M

M∑
s=1

∑
y∈Y

W (y|E(s))1D(y)=s (4.2)

= 1− 1

M

∑
y∈Y

M∑
s=1

W (y|E(s))1D(y)=s (4.3)

= 1− 1

M

∑
y∈Y

W (y|E(D(y))) (4.4)

≥ 1− |Y|
M

. (4.5)

27

So Perr ≥ 1 − N
M

. Note that in this calculation, we did not use any specifics of the identity
channel: the error probability of an M -code is always lower bounded by 1 − |Y|

M
. But for

the identity channel, this bound can be achieved by some M -code. In fact, let E(s) = s
if s ∈ [N] and otherwise set E(s) = 1. And set D(y) = y for y ∈ [N]. Then
Perr = M−N

M
= 1− N

M
. So in other words, M opt(W, δ) = bN/(1− δ)c.

Note that if N = 2n, we can see the identity channel as n independent copies of the perfect

bit channel. Then we have log2M
opt(W,δ)
n

≤ 1 +
log(1

1−δ)

n
(and the lower bound is very close,

the correction term is exponentially small in n).

2. Consider the channel with X = {a, b, c} and Y = {0, 1}. We haveW (0|a) = 1, W (1|c) = 1
and W (0|b) = W (1|c) = 1

2
. This was done in the HW.

3. The binary symmetric channel. We define the channel BSCf as follows: for x, y ∈ {0, 1},
BSCf (y|x) = 1 − f if x = y and BSCf (y|x) = f if x 6= y. As usual we consider
n independent copies of this channel BSCnf . In the first lecture, we studied some codes
for this channel. In particular, we had defined the repetition code which is a 2n/3-
code. Recall we had E(s1 . . . sn/3) = s1s1s1s2s2s2 . . . sn/3sn/3sn/3 and D(y1 . . . yn) =
maj(y1y2y3)maj(y4y5y6) We had analyzed the bit error probability and found that
Pbit = 3f 2 − 2f 3 and thus Perr = 1 − (1 − 3f 2 + 2f 3)n/3. In the regime f constant
and n growing, Perr goes to 1 so this is not a very good code. Understanding the tradeoff
between M and Perr for this channel is more complicated.

4.2 The information capacity
We now define an entropic quantity capture how good a channel is.

Definition 4.2.1 (Information capacity). The information capacity of a channel WY |X is given by

C(W) = max
PX

I(X : Y) ,

where the joint distribution of X, Y is defined by PXY (x, y) = PX(x)WY |X(y|x). Notice that the
maximization is over all distribution PX over the set X .

Let us compute this quantity for some channels.

1. The identity channel with X = Y = [N]. For any PX , we have I(X : Y) = H(X) −
H(X|Y). But for the identity channel, we have X = Y with probability 1. As a result,
H(X|Y) = 0. So it suffices to take PX to maximize H(X). This gives C(W) = logN .

2. Consider the channel with input alphabet X = {a, b, c} and output alphabet Y = {0, 1}.
Then if we try to take the distribution on the input to be uniform PX(x) = 1

3
for x ∈ X .

28

Then using the fact that PX|Y=0 = (2
3
, 1

3
, 0), we have

I(X : Y) = H(X)−H(X|Y)

= log2 3− h2(
1

3
)

= log2 3− 1

3
log2 3− 2

3
log2

3

2

=
2

3
.

But is this the largest we can obtain? If we instead take PX = (1
2
, 0, 1

2
), then we obtain

I(X : Y) = H(X)−H(X|Y) = 1 .

And it fact, we cannot do better as I(X : Y) = H(Y)−H(Y |X) ≤ H(Y) ≤ log |Y| = 1.

3. Now consider the binary symmetric channel BSCf . Let us write PX = (1−p, p) for p ∈ [0, 1].
Then, PY (0) = (1 − p)(1 − f) + pf and PY (1) = p(1 − f) + (1 − p)f . Moreover,
PY |X=0 = (1− f, f). As a result,

I(X : Y) = H(Y)−H(Y |X)

= h2((1− p)(1− f) + pf)− h2(f) .

Now observe that h2((1− p)(1− f) + pf) ≤ 1 with equality if p = 1
2
. We have shown that

C(BSCf) = 1− h2(f) .

4.3 Converse bounds
A converse bound is an upper bound on M opt(W, δ).

Theorem 4.3.1. Any M -code for W with error probability Perr satisfies

log2M ≤
C(W) + h2(Perr)

1− Perr
.

Proof Let us start with the proof for an M -code with Perr = 0. Given this code, we can define
the probability space as in (4.1). We then write log2M in terms of an entropic quantity.

log2M = H(S) = I(S : Ŝ) +H(S|Ŝ) (4.6)

= I(S : Ŝ) , (4.7)

where we use the fact that Perr = P
{
S 6= Ŝ

}
= 0, and thus H(S|Ŝ) = 0. Now we want to relate

I(S : Ŝ). For that we use the data processing inequality, saying that if A→ B → C forms a short
Markov chain, then I(A : B) ≥ I(A : C). By construction, the random variables S,X, Y, Ŝ form

29

a short Markov chain S → X → Y → Ŝ. We thus have I(S : Ŝ) ≤ I(S : Y) ≤ I(X : Y). As a
result, we obtain

log2M ≤ I(X : Y) ≤ C(W) .

We now need to handle the general case with Perr larger than 0. The intuition is simple, if Perr
is small, then H(S|Ŝ) is also small.

Lemma 4.3.2 (Fano’s inequality). If S ∈ [M] and Ŝ is such that P
{
S 6= Ŝ

}
= ε. Then

H(S|Ŝ) ≤ h2(ε) + ε logM .

Proof [of Fano’s inequality] We introduce the random variable E = 1 if S = Ŝ and E = 0 if
S 6= Ŝ.

H(S|Ŝ) = H(ES|Ŝ)−H(E|SŜ)

= H(ES|Ŝ)

= H(E|Ŝ) +H(S|ŜE) .

Now H(E|S) ≤ H(E) = h2(ε). Moreover,

H(S|ŜE) = PE(0)H(S|Ŝ)PSŜ|E=0
+ PE(1)H(S|Ŝ)PSŜ|E=1

.

Note that PSŜ|E=1(s, ŝ) = 0 if s 6= ŝ, which implies that H(S|Ŝ)PSŜ|E=1
= 0. In addition,

PE(0) = ε and H(S|Ŝ)PSŜ|E=0
≤ log2M , which gives the desired bound. ut

To conclude the proof of Theorem 4.3.1, we simply use Fano’s inequality in (4.6) and get

log2M ≤ C(W) + h2(Perr) + Perr log2M ,

which leads to the desired bound. ut
Let us now apply this converse bound to some examples of channels.

1. For the identity channel on [N]. This gives

log2M ≤
log2N + h2(Perr)

1− Perr
. (4.8)

Let us compare this to the simple bound we obtained in (4.5). There we showed that for any
M -code for the identity channel on [N], we have M

N
≤ 1

1−Perr . Taking the logarithm, we
obtain

log2M ≤ log2N + log2

(
1

1− Perr

)
. (4.9)

Note that the bound (4.9) can be much better than (4.8), in particular if Perr is not close to 0.
For example, if we are thinking of Perr = 1

2
, the bound (4.8) gives log2M ≤ 2 log2N + 2,

30

whereas (4.9) gives log2M ≤ log2N + 1. Note that the latter bound says that even if we
allow an error probability of 1

2
, the number of bits that can be sent through the channel as at

most 1 more than can be sent with very small error probability. For this reason it is called
a strong converse. On the other hand the weak converse bound of (4.8) only says that if we
allow an error probability of 1

2
, we cannot send more than twice the number of bits that could

be sent with very small error.

For this very simple channel, proving a strong converse was easy but in general it can be
much more difficult that the weak converse.

2. The binary symmetric channel BSC×nf , we get that

logM ≤
C(BSC×nf) + h2(Perr)

1− Perr
.

We have computed C(BSCf) for n = 1 but not for the n independent copies. For larger n, it
seems harder to compute C(BSC×nf) as this is an optimization problem over distribution PXn

on bitstrings of length n. However, as we will see next, C has a very interesting additivity
property which makes it easy to compute for channels of the form W×n. It turns out that
C(BSC×nf) = n · (1− h2(f)). Thus, we get

logM ≤ n(1− h2(f)) + h2(Perr)

1− Perr
.

Theorem 4.3.3. Given two channels W i with inputs in Xi and outputs in Yi, for i ∈ {1, 2}.
Define the channel W 12 with inputs in X1 × X2 and outputs in Y1 × Y2 as W 12(y1y2|x1x2) =
W 1(y1|x1) ·W 2(y2|x2). Then

C(W 12) = C(W 1) + C(W 2) . (4.10)

An immediate corollary of this theorem is that for any channel W , the information capacity of
n copies of W is simply n times the information capacity of W :

C(W×n) = nC(W)

In particular for the binary symmetric channel, C(BSC×nf) = n(1− h2(f)) as advertized above.
Proof [of Theorem 4.3.3] We prove the equality (4.10) by establishing the two inequalities ≥ and
≤ separately.

Let us start with the easy direction, ≥. For any distributions PXi on Xi for i ∈ {1, 2}, we
can define the joint distribution PX1X2 = PX1 × PX2 to be the product distribution. Applying the
channel W 12 to the random variable X1X2, we obtain random variables Y1Y2 as outputs. Note that
using the fact that X1 and X2 are independent and by definition of the product channel W 12, we
have PX1Y1X2Y2 = PX1Y1 × PX2Y2 . As a result,

I(X1X2 : Y1Y2) = I(X1 : Y1) + I(X2 : Y2) . (4.11)

Now observe that I(X1 : Y1) is simply the mutual information between X1 and the output of
channel W 1 applied to X1. As such, we have supPX1

I(X1 : Y1) = C(W 1) and supPX2
I(X2 :

31

Y2) = C(W 2). Now, as (4.11) is valid for any distributions PX1 and PX2 , we can take the supremum
over than and get

sup
PX1

,PX2

I(X1X2 : Y1Y2) = C(W 1) + C(W 2) . (4.12)

Note that the difference between the left-hand side and the definition of C(W 12) is that in
C(W 12) we optimize over all distributions PX1X2 whereas in (4.12) we are only looking at product
distributions of the form PX1 × PX2 . So clearly

C(W 12) ≥ C(W 1) + C(W 2) .

Let us now move to the non-trivial direction, ≤. We now take a general distribution PX1X2

which might not have product form. Then let Y1Y2 be the output of channel W 12 on input X1X2.
Note that Y1 and Y2 are in general not independent. Then,

I(X1X2 : Y1Y2) = H(Y1Y2)−H(Y1Y2|X1X2)

≤ H(Y1) +H(Y2)−H(Y1Y2|X1X2) ,

where we used the subadditivity of the entropy. Now to analyze the second term H(Y1Y2|X1X2),
we want to use the structure of the channel W 12 as a product of the two channels W 1 ×W 2. Note
that for any fixed x1, x2 conditioned on X1 = x1 and X2 = x2, the random variables Y1 and Y2 are
independent, as

PY1Y2|X1X2=x1x2(y1y2) = W 1(y1|x1)W 2(y2|x2) .

As a result,

H(Y1Y2)PY1Y2|X1X2=x1x2
= H(Y1)PY1|X1=x1

+H(Y2)PY2|X2=x2
.

As a result,

I(X1X2 : Y1Y2) ≤ H(Y1) +H(Y2)−
∑
x1∈X1

PX1(x1)H(Y1)PY1|X1=x1
−
∑
x2∈X2

PX2(x2)H(Y2)PY2|X2=x2

= I(X1 : Y1) + I(X2 : Y2)

≤ C(W 1) + C(W 2) .

We conclude by taking the supremum over all distributions PX1X2 . ut

In other words, this theorem is saying that for product channels W 1 ×W 2, an optimal choice
of input distribution to maximize the mutual information is to take the product of an optimal
distribution for W 1 and an optimal distribution for W 2.

32

4.4 Achievability bounds
Remember the surprisal random variable hX(X) = − log2 PX(X). We say this was the relevant
random variable for data compression and its expectation is the Shannon entropy E {hX(X)} =
H(X). For channel coding, the relevant random variable should be related to the correlation
between the input and output. We introduce a random variable whose expectation will be the
mutual information.

Definition 4.4.1 (Mutual information density). For random variables X ∈ X and Y ∈ Y , we
define the mutual information density as

iXY (x : y) = log2

PY |X(y|x)

PY (y)

= log2

PXY (x, y)

PX(x)PY (y)
,

provided PXY (x, y) 6= 0. If PXY (x, y) = 0, we set iXY (x : y) = −∞ if PX(x)PY (y) > 0 and if
PX(x) or PY (y) = 0 then iXY (x : y) = +∞ (this choice is arbitrary but this case is not interesting
anyway because x or y have zero probability).

Observe that

E {iXY (X : Y)} =
∑
x,y

PXY (x, y)iXY (x : y)

= I(X : Y) .

Let us consider an example. Assume X1 . . . Xn ∈ {0, 1}n are n uniform and independent bits.
Then assume we apply a binary symmetric channel to each bit independently, i.e., we flip each bit
with probability f , getting the random variables Y1 . . . Yn.

Let us compute iXnY n(xn : yn) for these random variables.

iXnY n(xn : yn) = log2

PY n|Xn(yn|xn)

PY n(yn)

= log2

∏n
i=1(1− f)xi⊕yifxi⊕yi⊕1

2−n

= log2

(1− f)n−dH(xn,yn)fdH(xn,yn)

2−n

= n+ (n− dH(xn, yn)) log2(1− f) + dH(xn, yn) log2 f ,

where dH is the Hamming distance between strings. If we fix xn ∈ {0, 1}n, this quantity is the
largest when yn = xn and decreases as the Hamming distance between them increases.

Theorem 4.4.2. Let W be a channel with input alphabet X and output alphabet Y . For any
distribution PX on X , define the distribution PXY on X ×Y by PXY (x, y) = PX(x)W (y|x). Then
for any τ > 0, there exists an M -code for W with

Perr ≤ P {iXY (X : Y) ≤ logM + τ}+ 2−τ .

33

This is roughly saying that if we look at the random variable iXY (X : Y), we can roughly send
logM bits of information with error probability δ whenever P {iXY (X : Y) ≤ logM} ≤ δ. If we
have a channel such that iXY (X : Y) is close to its expectation with high probability, then we can
take logM ≈ I(X : Y). We will discuss such a case in more detail after proving the theorem.
Proof This is an achievability proof so we need to construct an M -code, by describing E and D.
Let us for now keep E arbitrary and we will choose it later. We try to determine first how to choose
D if E is fixed. We can write the error probability as

Perr = 1− 1

M

M∑
s=1

∑
y∈Y

W (y|E(s))1D(y)=s

= 1− 1

M

∑
y∈Y

W (y|E(D(y))) .

To minimize this quantity, we want to choose D(y) to maximize W (y|E(D(y))). So we may
define D∗(y) = argmaxs∈[M]W (y|E(s)). If we choose the decoder D∗, then the error probability
becomes

Perr = 1− 1

M

∑
y∈Y

max
s∈[M]

W (y|E(s)) .

This expression is not so easy to analyze. So we will consider another decoder that is easier and
not much worse. The idea is to replace the maximum by a cutoff value: if there is an s such that
W (y|E(s)) ≥ t, then we return such an s and otherwise we simply abort. This threshold t will
basically be M · PY (y) where M is the number of messages and PY (y) =

∑
x PX(x)W (y|x).

Recall that PX is the distribution that we have in the statement of the theorem. By taking
the logarithm, this is equivalent to the condition that iXY (E(s) : y) ≥ logM + τ , where
PXY (x, y) = PX(x)W (y|x). More precisely, let us define

D(y) =

{
s if there is a unique s : iXY (E(s) : y) ≥ logM + τ
x0 otherwise.

Let us now analyze the error probability for this D and try to see which properties of E we
would like to have. We have Perr = 1

M

∑
s Perr,s where Perr,s is the error probability if the message

to be sent is s. For a given s, the probability that it is decoded incorrectly can be written as

Perr,s =
∑
y∈Y

W (y|E(s))1D(y) 6=s (4.13)

≤
∑
y∈Y

W (y|E(s))1iXY (E(s):y)<logM+τ OR ∃s′ 6=s:iXY (E(s′):y)≥logM+τ (4.14)

≤
∑
y∈Y

W (y|E(s))1iXY (E(s):y)<logM+τ +
∑
y∈Y

W (y|E(s))
∑
s′ 6=s

1iXY (E(s′):y)≥logM+τ . (4.15)

To have more intuition, it might be helpful to just write the above calculation in terms
of random variables. We consider the random variables SY Ŝ defined by PSY Ŝ(s, y, ŝ) =

34

1
M
W (y|E(s))1D(y)=ŝ.

Perr,s = P
{
Ŝ 6= S|S = s

}
≤ P {iXY (E(s) : Y) < logM + τ OR ∃s′ 6= s : iXY (E(s′) : Y) ≥ logM + τ |S = s}

≤ P {iXY (E(s) : Y) < logM + τ |S = s}+
∑
s′ 6=s

P {iXY (E(s′) : Y) ≥ logM + τ |S = s} ,

where we used a union bound in the last step. Note that these probabilities are only over Y which
is drawn from the distribution given by W (.|E(s)). Let us try to understand what these terms are
for the channel W being n copies of the binary symmetric channel with flip probability f . Let us
also think of X as uniformly distributed on bitstrings on length n. Recall that in this case

iXY (E(s) : Y) = n+ (n− dH(E(s), Y)) log2(1− f) + dH(E(s), Y) log2 f .

As Y corresponds to E(s) with bits independently flipped with probability f , we have with high
probability dH(E(s), Y) ≈ fn. So

iXY (E(s) : Y) ≈ n+ n ((1− f) log2(1− f) + f log2 f) = n(1− h2(f)) .

Note that doesn’t even depend on the choice of E(s) we make.
Now what if we look at the second term. Y is still obtained by flipping bits of E(s) at random

and we look at iXY (E(s′) : Y). It is now

iXY (E(s′) : Y) = n+ (n− dH(E(s′), Y)) log2(1− f) + dH(E(s′), Y) log2 f .

For this quantity to be small, we would like E(s′) to be far from E(s) so that dH(E(s′), Y) �
dH(E(s), Y) and so iXY (E(s′) : Y)� iXY (E(s) : Y). For example, if we choose E(s) = 0n and
E(s′) = 1n, then we expect dH(E(s), Y) ≈ fn and dH(E(s′), Y) ≈ (1−f)n. For two codewords,
it is relatively easy to choose them far apart, but this shows what we want to do in general, choose
E(s) so that for any pair E(s) and E(s′) are far apart from each other.

A good way of achieving this is by choosing E(1), . . . E(M) at random and independent from
the distribution PX . Then it becomes easy to analyze the expectation. Let us now analyze the error
probability terms in (4.15). The first term is

E
E(s)∼PX

{∑
y∈Y

W (y|E(s))1iXY (E(s):y)<logM+τ

}
=

∑
x∈X ,y∈Y

PX(x)W (y|x)1iXY (x:y)<logM+τ

= P {iXY (X : Y) < logM + τ} .

35

Now let us look at the second term for s 6= s′,

E
E(s)∼PX ,E(s′)∼PX

{∑
y∈Y

W (y|E(s))1iXY (E(s′):y)≥logM+τ

}
=

∑
x,x′∈X ,y∈Y

PX(x)PX(x′)W (y|x)1iXY (E(s′):y)≥logM+τ

=
∑

x,x′∈X ,y∈Y

PX(x)PX(x′)W (y|x)1W (y|x′)≥PY (y)(M2τ)

≤
∑

x′∈X ,y∈Y

PX(x′)
2−τ

M
W (y|x′)1W (y|x′)≥PY (y)(M2τ)

≤ 2−τ

M
.

As a result, getting back to (4.15), we get back for all s, in expectation over the choice of the
codebook

E {Perr,s} ≤ P {iXY (X : Y) < logM + τ}+ (1− 1

M
)2−τ

≤ P {iXY (X : Y) < logM + τ}+ 2−τ ,

as advertised. ut

Important special case: memoryless channels As we said, an important special class of
channels are memoryless channels that have the form W×n. In this case, an M -code is said to
have rate log2M

n
, which we interpret as the number of bits of information we can send per channel

use. In this case, the encoder takes a message in [M] and maps it to a codeword in X n and the
decoder takes an element in Yn and maps it to a message in [M]. The examples of codes we saw
in the first lecture looked at blocks of size 1 or 3 and encoded each block independently. This gave
use the impression that if we want the error probability to go to zero, then we need to take the rate
log2M
n

to 0. Shannon’s theorem below says that we can do much better, in fact for any nontrivial
channel, we can code at a nonzero rate with an error probability going to 0 as n→∞.

Theorem 4.4.3 (Shannon’s noisy coding theorem). Let W be a channel. Recall that the
information capacity C(W) = maxPX I(X : Y). Then for any δ > 0,

C(W) ≤ lim
n→∞

log2M
opt(W×n, δ)

n
≤ C(W)

1− δ
.

Proof Let PX be a distribution achieving the maximum defining C(W). Let X1, . . . , Xn be
independent copies of X and Y1, . . . , Yn be the corresponding outputs of the channels. Then the
pairs (Xi, Yi) are mutually independent, so

iXnY n(Xn : Y n) =
n∑
i=1

iXY (Xi : Yi) .

36

This is a sum of iid random variables and by the law of large numbers, for any ε > 0,

lim
n→∞

P {iXnY n(Xn : Y n) ≤ n(I(X : Y)− ε)} = 0 .

Take M =
⌊
2n(I(X:Y)−2ε)

⌋
and τ = nε so that

P {iXnY n(X : Y) ≤ logM + τ}+ 2−τ ≤ P {iXnY n(Xn : Y n) ≤ n(I(X : Y)− ε)}+ 2−εn ,

which is smaller than δ for sufficiently large n. As a result, for any ε > 0, we have for large enough
n,

log2M
opt(W×n, δ)

n
≥ I(X : Y)− 2ε .

ut
Some comments on the theorem:

• The 1− δ in the upper bound is only an artifact of the proof. It turns out one can prove that
for any δ > 0, limn→∞

log2M
opt(W×n,δ)
n

= C(W). This means that there is a sharp threshold
that happens at a rate given by C(W). Below it, the probability can be made arbitrarily small
and above it the error probability gets close to 1.

• One can obtain quite good finite n bounds. It turns out that log2M
opt(W×n,δ)
n

= C(W) + Qδ√
n

+

O(logn
n

).

• Proof is not explicit, does not give you a good code. Even to specify the codebook, need
exponential space in n. Also, in order to use this in practice, we would like the encoding and
decoding function to be efficiently computed as a function of n. Since Shannon’s theorem, an
important focus in information theory theory is to find explicit codes with efficient encoding
and decoding that come close to capacity. This is the study of error correcting codes. That
will be the topic of the second part of the course.

Before concluding this chapter, an important point to comment on is that we always allowed a
probability of error in the transmission. What happens if I ask for a zero error probability. Take for
example our favorite example, n copies of a binary symmetric channel. For such a channel, there
is no way to send even a single bit without error. For any n and f ∈ (0, 1),

M opt(BSC×nf , 0) = 1 .

In fact, for any choice of E(1) and E(2), both codewords can be mapped to 0n with nonzero
probability which shows there has to be some error. Another example would be the channel with
inputs and output 1, 2, 3 and W (i|i) = W (i + 1|i) = 1

2
for i ∈ {1, 2} and W (3|3) = 1. Note

that in this case, 1 and 2 cannot be both codewords and similarly 2 and 3 cannot be codewords
at the same time. However 1 and 3 can be codewords together. For the zero-error setting, the
relevant parameter of a channel to consider is the so-called confusability graph G(W) of W . The
set of vertices is indexed by the inputs of the channel and we have an edge (x, x′) if there exists
a y ∈ Y such that W (y|x) > 0 and W (y|x′) > 0. This means that if both x and x′ are used as

37

codewords there is a chance of confusing them so they cannot both be codewords if we are aiming
for zero error probability. Then M opt is given by the maximum independent set of the graph
G(W),M opt(W, 0) = |MIS(G(W))|. As for the case with nonzero error, we can take the setting
of a memoryless channel and compute the asymptotic rate: log2M

opt(W×n,0)
n

. Can we find a simple
characterization of the limit as n→∞ as in the case with nonzero error? Note that this corresponds
to computing the maximum independent set in the graph product G(W×n) = G(W)⊗n, defined
by (x1, . . . , xn) ∼ (x′1, . . . , x

′
n) iff x1 ∼ x′1, . . . , xn ∼ x′n. This turns out to be quite complicated.

Even forC5, the cycle of length 5, it took about 30 years to prove it. It is clear thatM opt(C5, 0) = 2.
It is clear that M opt(C×n, 0) ≥ 2n, by simply choosing the product of the independent set. But
it turns out one can find a larger one: M opt(C×2

5 , 0) = 5. The hard part is then to show that as
one takes 2n copies of the graph, there are no independent sets of size ≥ 5n. This is shown via
semidefinite programming. Then one has

lim
n→∞

log2M
opt(C×n5 , 0)

n
=

1

2
log 5 .

Note that this limit for C7 is not known.

38

Chapter 5

Information theory and combinatorics

For counting objects, the properties of the Shannon entropy is sometimes useful. We give two
simple examples. Both use a simple inequality about the entropy of a collection of random
variables.

Lemma 5.0.1. If S1, . . . , Sm ⊆ [n] and for every i ∈ [n] appears at least k times, then

k ·H(X1 . . . Xn) ≤
m∑
i=1

H(XSi)

Proof We write H(X1 . . . Xn) = H(X1) + H(X2|X1) + · · · + H(Xn|X1 . . . Xn−1). Then for
each Sj = {ej(1), . . . , ej(|Sj|)}. We have

H(XSj) = H(Xej(1)) +H(Xej(2)|Xej(1)) + . . .

≥ H(Xej(1)|X1 . . . Xej(1)−1) +H(Xej(2)|X1 . . . Xej(2)−1) +

As for each i ∈ [n], i appears in at least k sets, then the term H(Xi|X1 . . . Xi−1) appears at least k
times and we get the desired result. ut

5.1 Projection of point sets
Suppose we have m points S = {a(1), . . . , a(m)} ∈ R3. We write the coordinates of point
a(i) = (a1(i), a2(i), a3(i)). Suppose we only know the sizes of the projection sets on XY , XZ
and Y Z planes, i.e.,

ΠXY = {(a1(i), a2(i)), i ∈ [m]}
ΠY Z = {(a2(i), a3(i)), i ∈ [m]}
ΠXZ = {(a2(i), a3(i)), i ∈ [m]} .

Assume that |ΠXY |, |ΠY Z |, |ΠXZ | ≤ n. How large can m be? Let us consider an example, if the
points form a

√
n×
√
n×
√
n grid, then the conditions are satisfied and m = n3/2. We will show

that this is the largest m can be.

39

Ni Luh Dewi Sintiari
here, X1, ..., Xn are random variables and X_S = (X_j) with j is in S, is a collection of random variables

Proposition 5.1.1. If a S of m points in R3 has all projections of size at most n. Then m ≤ n3/2.

Proof Define random variables A1A2A3 obtained by choosing the coordinates of a random point
in S, i.e.,

PA1A2A3(a1a2a3) =

{
1
m

if a1a2a3 = a1(i)a2(i)a3(i)
0 otherwise .

We have H(A1A2A3) = logm. The condition |ΠXY | ≤ n says that H(A1A2) ≤ log n. Similarly
H(A2A3), H(A1A3) ≤ n. Then using Shearer’s lemma, we get

logm = H(A1A2A3) ≤ 1

2
(H(A1A2) +H(A1A3) +H(A2A3)) ≤ 1

2
3 log n ,

and so m ≤ n3/2. ut

5.2 Number of independent sets in a graph
How many independent sets can there be in a graph on n vertices? Let us restrict to d-regular
graphs. If d = 1, the graph is just a perfect matching so for each pair you have 3 choices: either
nothing, vertex 1 or vertex 2, so the number of independent sets is 3n/2. If d = 2, then there are
more possibilities for the graph. If we take a graph that is a union of cycles with 4 vertices, then
we get 7 independent sets for each cycle and there are n/4 cycles so we get 7n/4 independent sets.

Theorem 5.2.1. If G is a bipartite with n vertices, then the number of independent sets of G is at
most (2d+1 − 1)

n
2d .

For simplicity of the proof, we restricted our attention to bipartite graphs, the statement is also
true in general. Also note that this bound is achieved by some graph. If you take n

2d
copies of the

complete bipartite graph with d vertices in each side, you obtain exactly this many independent
sets.
Proof We assume the vertices of G are labelled by [n] := {1, . . . , n} and let A and B two subsets
of [n] with edges only between A and B. We assume moreover that |A| ≥ |B|. We write I(G) as
the vertex set of G. Let I be a uniformly random independent set in I(G). We can specify I by
specifying whether for each vertex v, v ∈ I or not. For v ∈ [n], let Xv = 1v∈I . As a result,

H(X1 . . . Xn) = H(I) = log |I(G)| .

We now decompose the entropy into parts:

H(X1 . . . Xn) = H(XA) +H(XB|XA) .

Let us start with the second term. We have

H(XB|XA) ≤
∑
b∈B

H(Xb|XA)

≤
∑
b∈B

H(Xb|XN(b)) ,

40

where N(b) = {a ∈ A : (a, b) ∈ E(G)} is the neighbourhood of b. We want to still simplify
this again by just conditioning on whether N(b) has any vertex in the independent set. For that,
introduce Qb = 1 if |I ∩N(b)| = ∅ and Qb = 0 otherwise.

H(XB|XA) ≤
∑
b∈B

H(Xb|Qb)

≤
∑
b∈B

PQb(0) ·H(PXb|Qb=0) + PQb(1) ·H(PXb|Qb=1) .

Now if Qb = 0, b /∈ I and so Xb = 0 and H(PXb|Qb=0) = 0. We also have H(PXb|Qb=1) ≤ 1. As a
result, write qb = PQb(1), we get

H(XB|XA) ≤
∑
b∈B

qB .

We do not know the value of qb and in fact it depends on the structure of the graph on which we do
not want to make assumptions. Our objective now is to find an upper bound on H(XA) depending
on qb. For that we use Shearer’s lemma: considering the sets N(b) for b ∈ B, each element a ∈ A
appears in exactly d such sets using the fact that the graph is regular. As a result,

H(XA) ≤ 1

d

∑
b∈B

H(XN(b)) .

Now we want to relate H(XN(b)) to qb which is the probability that |I ∩ N(b)| = ∅. For that
observe that H(XN(b)) = H(XN(b)Qb) as Qb can be determined from XN(b). Then we can write

H(XN(b)Qb) = H(Qb) +H(XN(b)|Qb)

= h2(qb) + qbH(PXN(b)|Qb=1) + (1− qb)H(PXN(b)|Qb=0) ≤ h2(qb) + (1− qb) log(2d − 1) ,

where we used the fact that if Qb = 1, then XN(b) = 0 . . . 0 and if Qb = 0, then XN(b) can take all
possible values except 0 . . . 0 and there are 2d − 1 such possibilities. As a result, we get

log |I(G)| = H(X1 . . . Xn) ≤ 1

d

∑
b∈B

h2(qb) + (1− qb) log(2d − 1) +
∑
b∈B

qb

=
|B|
d

log(2d − 1) +
1

d

∑
b∈B

h2(qb) + qb log
2d

2d − 1
.

If we differentiate this with respect to qb, the maximum is for qb = 2d

2d+1−1
which leads to

log |I(G)| ≤ |B|
d

log(2d − 1) +
1

d

∑
b∈B

h2

(
2d

2d+1 − 1

)
+

2d

2d+1 − 1
log

2d

2d − 1

=
n

2d
log(2d+1 − 1) ,

which concludes the proof of the desired result. ut

41

Chapter 6

Error-correcting codes

Shannon’s theorem says that for any nontrivial channels there are M -codes with M ≈ 2nC(W)

codewords that can be decoded with very small error probability given the output of the channel
W . It even said that provided we pick the codewords at random with a good distribution, then most
codes are good. Our objective now is to explicitly construct good codes.

The notion of a good code depends on the channel being studied and involves both the
construction of an encoder and a decoder. To simplify the study it is useful to consider a different
error model than the one we considered so far and in this model the existence of a decoder is
directly related to a simple property of the codebook. Recall that in the Shannon model, an encoder
is good if there exists a decoder that can decode with a small error probability. In the Hamming
model, a good encoder is one for which there is a decoder that can correct any error of weight at
most t. The models are not exactly the same but they are related and we will see that it is possible
to construct good codes in the Shannon sense using good codes in the Hamming sense.

6.1 General error-correcting codes
Definition 6.1.1. A code C of blocklength n over an alphabet Σ is a subset of Σn. We usually write
q = |Σ|.

The dimension of a code is defined as k = logq |C|.
Remark. Note that a way to specify a code is as an injective encoding function C : Σk → Σn

and the code corresponds to the image of the encoding function C. Even though they are not the
same objects, we will be using the word “code” for both of these.

As mentioned before, we consider the Hamming error model where our objective is to be able
to correct all errors of weight at most t. Note that if you want to think it terms of channels, you
should see X = Y = Σ and then taking n copies of the channel for example.

Definition 6.1.2. C is t-error correcting if there exists a decoding map D : Σn → C such that for
any c ∈ C and any error pattern e with at most t errors D(c+ e) = c.

Let us look at simple examples

1. The repetition code Crep = {000, 111}. This code has q = 2, n = 3, k = 1. It is 1-error
correcting. In fact, my decoding function can map to 000 inputs of weight at most 1 and map
to 111 inputs of weight ≥ 2.

42

2. The binary code defined by C⊕(x1x2) = x1x2(x1 ⊕ x2) has q = 2, n = 3, k = 2. It is not
1-error correcting. In fact C⊕(00) = 000 and C⊕(01) = 011. If I apply a weight 1 error to
the first codewords I can get 010, but I can also get to 010 by applying a weight 1 error to the
second codeword. So I can detect that there is an error but I cannot correct for it.

From this example, one sees that the relevant parameter that governs how many errors a code
can correct is the Hamming distance between the codewords.

Definition 6.1.3 (Minimum distance of a code). The Hamming distance between u, v ∈ Σn is
defined by ∆(u, v) = |{i ∈ [n] : ui 6= vi}|.

The minimum distance (or just distance) of a code C is defined as

d = min
c,c′∈C,c6=c′

∆(c, c′) .

Note that in the Hamming distance, we do not have a notion of distance between two symbols
in Σ, they are either the same or different. For example, if we think of Σ = {0, 1} and consider
the bitstrings u = 0010 and v = 1110, their Hamming distance is 2. However, if we consider
Σ = {0, 1}2 and consider u, v ∈ Σ2, then their Hamming distance is 1.

Let us look at the examples we considered before

1. The repetition code Crep has a minimum distance of 3

2. The code C⊕ has a minimum distance of 2. In fact, take two different codewords c =
C⊕(x1x2) and c′ = C⊕(y1y2). Then if ∆(x1x2, y1y2) = 2, then ∆(c, c′) ≥ 2. Otherwise, if
∆(x1x2, y1y2) = 1, then ∆(c, c′) = 2.

We now see that minimum distance is directly related to the number of errors that can be
corrected. We only do here the special case of d odd, the even case will be done in the tutorial.

Proposition 6.1.4. Assume d ≥ 3 is odd. Then the following are equivalent.

• C has minimum distance d

• C can correct d−1
2

errors

Proof Suppose C has minimum distance d. Then define the function D : Σn → C by
D(y) = argminc∈C∆(c, y). Then suppose c1 is transmitted and ∆(c1, y) ≤ t. Then let D(y) = c.
We have ∆(c1, c) ≤ ∆(c1, y) + ∆(y, c) ≤ t + t. This is equal to 2d provided t = d−1

2
. As such

c = c1.
Now suppose C has distance ≤ d − 1. Then there exists c1, c2 ∈ C with ∆(c1, c2) ≤ d − 1.

Consider y such that ∆(y, c1),∆(y, c2) ≤ d−1
2

. This y could be received for either c1 or c2 so C
cannot correct d−1

2
errors. ut

Notation: We use the notation (n, k, d)q-code when blocklength n, dimension k, minimum
distance d and the alphabet Σ has size q.

Let us see another less trivial code that we have already encountered in the first lecture. This is
the Hamming code. It is also a binary code with q = 2. We may define it by

CH(x1x2x3x4) = (x1, x2, x3, x4, x1 ⊕ x2 ⊕ x4, x1 ⊕ x3 ⊕ x4, x2 ⊕ x3 ⊕ x4) .

43

This is a (7, 4, d)2 code where we still have to determine d. I claim that the minimum distance is
3. First 0000000 ∈ CH and 1000110 ∈ CH and they are at distance 3. Moreover, for two different
codewords CH(x) and CH(y), we can write

∆(CH(x), CH(y)) = |{i ∈ [7] : CH(x)i 6= CH(y)i}|
= |{i ∈ [7] : CH(x)i + CH(y)i 6= 0}|
= |CH(x) + CH(y)|
= |CH(x+ y)| ,

as the mapping CH is a linear map. So it suffices to determine minx 6=0 |CH(x)|. We do this by
considering the different cases for the Hamming weight of x. If |x| = 1, then two or three of the
following bits evaluate to 1: x1⊕ x2⊕ x4, x1⊕ x3⊕ x4, x2⊕ x3⊕ x4. If |x| = 2, then at least one
of these bits evaluates to 1 and if |x| = 3, we already have |CH(x)| ≥ 3. We conclude that CH is a
(7, 4, 3)2 code.

Note that this code has a very nice property that we will be exploiting further. The encoding
function is a linear function. In fact, we can see messages as elements of F4

2 and codewords as
elements of F7

2 and the transformation is given by a matrix

GH =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

and CH(x) = xGH where we see x as a row vector in F4

2. One can in general define linear codes
whenever Σ has a field structure so that Σn is a vector space over the field Σ and C ⊆ Σn is
a subspace. Before getting into the detailed study of linear codes, let us determine some simple
bounds on the best parameters one can achieve for codes.

6.1.1 General bounds on the best codes
For a fixed n and q, we would like k and d to be as large as possible. For example, the Hamming
code is a (7, 4, 3)2 code, is it possible to improve it to a (7, 5, 3)2 code for example? The answer is
no by the following simple packing bound. Again, we only state here a simplified for with q = 2
and d = 3 but it is easy to generalize (see tutorial).

Theorem 6.1.5 (Hamming bound (special case)). Every binary code with blocklength n, dimension
k and distance d = 3 satisfies

k ≤ n− log2(n+ 1) .

For n = 7 and d = 3, this gives k ≤ 4, which means the Hamming code is optimal in this
sense.
Proof Let C be such a code and c1, c2 be two codewords. For u ∈ {0, 1}n, let B(u, 1) = {v ∈
{0, 1}n : ∆(u, v) ≤ 1}. We have B(c1, 1) ∩ B(c2, 1) = ∅. In addition |B(u, 1)| = 1 + n. As a
result,

| ∪c∈C B(c, 1)| = (n+ 1)2k .

44

But clearly this number is at most the size of the whole space which is 2n. So

k ≤ n− log2(n+ 1) .

ut

Note that having equality in this bound means that we have perfect packing, i.e., ∪c∈CB(c, 1) =
{0, 1}n. Such codes are called perfect codes. In general, the Hamming bound can be written as:
for any (n, k, d)q code, we have k ≤ n− logq Volq(

⌊
d−1

2

⌋
, n), where Volq(t, n) =

∑t
i=0

(
n
i

)
(q−1)i

is the number of points in Σn that are at distance at most t from a given point. Recall that we have
Volq(t, n) ≈ qnhq(

t
n

) with hq(x) = −x logq(x)− (1− x) logq(1− x).
We can also give a simple construction of codes that achieve a good distance by choosing the

codewords in a greedy way.

Theorem 6.1.6 (Gilbert-Varshamov bound). Let q ≥ 2 and 1 ≤ d ≤ n. There exists an (n, k, d)q
code for some k with

k ≥ n− logq Volq(d− 1, n) .

Proof We analyze a greedy algorithm to construct C. Start with C = ∅. Then while there is an
x ∈ Σn such that ∆(x, c) ≥ d for all c ∈ C, then add x to C. We do so as long as we can, i.e., as
long as such an x exists. At any time of the algorithm, the code C has minimum distance at least
d. Now at the end of the algorithm for all x ∈ Σn, there exists a c ∈ C such that ∆(x, c) ≤ d− 1.
In other words, we have

Σn ⊆ ∪c∈CB(c, d− 1) ,

where B(c, d − 1) = {c′ ∈ Σn : ∆(c, c′) ≤ d − 1}. Looking at the cardinality of both sets we
obtain

qn ≤
∑
c∈C

|B(c, d− 1)| = qkVolq(d− 1, n) .

Taking the logarithm, we get the desired inequality. ut

So in terms of parameters we see that we can have codes with

n− logq Volq(d− 1, n) ≤ k ≤ n− logq Volq(

⌊
d− 1

2

⌋
, n) .

There is still a gap, but also the codes obtained using this Gilbert-Vashamov bound do not have
a very nice structure. In particular, only to describe the code, I should give qk codewords in Σn

which is exponentially large in k. And remember our goal was also to get encoding and decoding
function that are efficient which is difficult if we don’t even have an efficient description of the
code.

45

6.2 Linear error-correcting codes
We now consider a very important family of error-correcting codes: linear codes. As we will see a
primary advantage of such a family is that a linear code can be represented in an efficient way. A
linear code is simply a code that has the structure of a vector space. For this to be meaningful, we
need to have a vector space structure on Σn. For that we need a field, in particular a finite field.

Theorem 6.2.1. The size of any finite field is q = ps for some prime p and some integer s ≥ 1.
Moreover, there is a unique field of size q denoted Fq.

For primes q = p, Fp can be seen as the integers {0, 1, . . . , p − 1} with the usual addition and
multiplication taken mod p. For prime powers q = ps, the construction is a bit more complicated.
An element in Fq can be seen as a polynomial over Fp taken modulo an irreducible polynomial of
degree s.

Definition 6.2.2. Let q be a prime power. C ⊆ Fnq is a linear code if it is a linear subspace of Fnq ,
i.e., if x, y ∈ C then x+ y ∈ C and a · x ∈ C for a ∈ Fq. If C has dimension k and distance d, we
use the notation [n, k, d]q.

Remark. Note that here we are talking about the dimension as defined for general codes:
logq |C|. Note that this corresponds here with the notion of dimension of a subspace of a vector
space (and this is where the name comes from).

Observe that the repetition code C = {000, 111} is a linear code with parameters [3, 1, 3]2.
As mentioned earlier, the big advantage of linear codes is that they can be concisely represented

using a basis. The following theorem gives two important representations we will be using.

Proposition 6.2.3. Let S be a linear subspace of Fnq . Then the following properties hold.

1. |S| = qk for some k ∈ {0, . . . , n}, and k is called the dimension of S

2. There exists a basis v1, . . . , vk ∈ S such that for any x ∈ S there is a unique tuple
(a1, . . . , ak) ∈ Fkq such that x =

∑k
i=1 aivi. Then the k × n matrix with rows given by

the vectors vi is called a generator matrix

G =

← v1 →
← v2 →

...
← vk →

 .

With this notation we have x = (a1 . . . ak) ·G, where x is seen as a row vector. Note that the
rows of this matrix are linearly independent so G has full rank k.

3. There exists a full rank (n − k) × n matrix H called parity check matrix such that for all
x ∈ S, HxT = 0.

Remark. There are in general many generator matrices and parity check matrices for the same
subspace S. Also note that the name parity check matrix comes for the setting of F2 where Hix

T

can be seen as a parity check condition on x.

46

Before we sketch a proof, let us give a generator and parity check matrix for the repetition
code:

G =
(
1 1 1

)
and H =

(
1 1 0
1 0 1

)
.

Proof [Sketch for Proposition 6.2.3] To construct a basis, one can do so in a greedy way. This will
also show that |S| = qk. If S = {0}, then there is nothing to show. Otherwise, take any nonzero
element in S and call it v1. Then at step t, we define vt ∈ S with vt /∈ {

∑t−1
i=1 aivi, ai ∈ Fq}.

Then we stop whenever such a vt cannot be found. It is then clear that one has then obtained a set
of vectors that generate S. And it is also simple to show by induction that at any step t, the set
{
∑t

i=1 aivi, ai ∈ Fq} contains exactly qt elements in S.
To construct a parity check matrix, consider the set N = {y ∈ Fnq :

∑n
i=1 xiyi = 0 for all x ∈

S}. Then N is a linear subspace of Fnq . Note that N is also the kernel of the map y 7→ GyT , so
by the rank nullity theorem, the dimension of N is n − k. To obtain a parity check matrix for S
simply take a basis of N . ut

What is the relation between these two representations, can we go from one representation to
the other? Yes there are some simple relations, to be seen in the tutorial.

6.2.1 Minimum distance of a linear code
Proposition 6.2.4. The minimum distance of a linear code C ⊆ Fnq is given by d = minc∈C,c6=0 |c|,
where we write |c| = {i ∈ [n] : ci 6= 0} for the weight of c.

Proof 0 ∈ C and ∆(0, c) = |c| so the minimum distance is at least minc∈C,c6=0 |c|. Moreover,
for c1, c2 ∈ C, we have ∆(c1, c2) = |c1 − c2|. But c1 − c2 ∈ C and is nonzero so ∆(c1, c2) ≥
minc∈C,c6=0 |c|. ut

The minimum distance also has a nice characterization in terms of the parity check matrix.

Proposition 6.2.5. Let C be an [n, k, d]q code C with parity check matrix

H =
(
H1 H2 · · · Hn

)
,

with columns denoted H i. Let t denote the minimum number of linearly dependent columns of H ,
i.e., t = min{|T | : T ⊆ [n],

∑
i∈T aiH

i = 0 for some ai ∈ Fq}. Then

d = t .

Proof Let us start with t ≤ d. Let c be a codeword with |c| = d. Then HcT = 0, which maybe
written as

∑n
i=1 ciH

i = 0. The support of c gives d columns of H that are linearly dependent.
For d ≤ t, LetH i1 , . . . , H it be linearly dependent columns. Then there exists nonzero elements

ci1 , . . . cit such that
∑t

j=1 cijH
ij = 0. But this means that x ∈ Fnq defined by xij = cij for all j and

xi = 0 otherwise belongs to the code C. As x has weight t, we obtain d ≤ t. ut
Let us now look at an example of a family of codes, namely the generalized Hamming codes.

These are binary codes, i.e., q = 2 and we define them with their parity check matrix.

Hr =
(
H1
r H2

r . . . H2r−1
r

)
,

47

where H i
r is the column vector of length r representing i in binary. For example, for r = 3, we

have

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

First, note that this is a valid parity check matrix as it has full rank, i.e., rank r, as for example for

r = 3, the columns

0
0
1

 ,

0
1
0

 ,

1
0
0

 are linearly independent. As a result, the dimension of the

Hamming code of order r has blocklength 2r−1 and dimension 2r−1−r. In particular, for r = 3,
the dimension is 4. This actually corresponds to the Hamming code we have seen earlier as

CH(x1x2x3x4) = (x1, x2, x3, x4, x1 ⊕ x2 ⊕ x4, x1 ⊕ x3 ⊕ x4, x2 ⊕ x3 ⊕ x4) .

One can check that all these codewords satisfy the parity conditions, and as the dimensions match,
this shows the codes are the same. Now we would like to determine the minimum distance of these
codes. For r = 3, we know the distance is 3.

Claim. The Hamming code with parity check matrix Hr is a [2r − 1, 2r − 1 − r, 3]2 code for
all r ≥ 3.

First, let us show that the distance is at least 3. In fact, a distance of 2 would mean that there
are two columns that are linearly dependent, i.e., H i

r + Hj
r = 0 for some i 6= j. But this implies

that H i
r = Hj

r which implies i = j.
Now, observing that H1

r +H2
r +H3

r = 0, the distance is exactly 3.
Note that this family of codes matches exactly the Hamming bound which says k ≤ n −

log2(n + 1). These are perfect codes (i.e., if we take a ball of radius 1 around every codeword we
cover the space of all bitstrings.

This family of codes have a very good rate of 2r−r−1
2r−1

(very close to 1), but a poor minimum
distance that is constant equal to 3.

6.2.2 Dual code of a linear code
Definition 6.2.6. Let C be a linear code with parity check matrix H . The code with generator
matrix H is denoted C⊥ and called the dual code.

Exercise: The dual code C⊥ does not depend on the choice of the parity check matrix H . Also
note that this is very different from a complement, in fact we can even have C⊥ = C.

In terms of parameters, if C is an [n, k]q code, then C⊥ is an [n, n− k]q code.
Consider the Hamming code CHam,r with parameters [2r − 1, 2r − r − 1, 3]2, the dual code is

called the simplex code CSim,r is a [2r − 1, r, ?]2 code. Note that this code has a very small rate
of r

2r−1
, but it is still sometimes useful. As it has Hr as generator matrix, one possible encoding

function for the code to be CSim,r(x) = xHr. So the i-th bit of CSim,r(x) is the inner product
between x andH i

r. In other words, to encode x, we consider the inner product with all the bitstrings
of length r, except the 0 bitstring. It is convenient to actually add also the 0 bitstring of length r as
the first column of the generator matrix, this defines the Hadamard code CHad,r, which only differs
from CSim,r by adding a 0 at the beginning of every codeword.

48

Proposition 6.2.7. The minimum distance of the codes CSim,r and CHad,r is 2r−1.

Proof It is sufficient to prove the claim for CHad,r as it only has a leading zero compared to
CSim,r.

Our objective is to determine a codeword of minimum weight. Note that it is not sufficient
to look only at the rows of the generator matrix Hr and take the minimum weight as a linear
combination of these rows might have a smaller weight. But for this special code, we will show a
very strong property: for any c ∈ CHad,r, c 6= 0, we have |c| = 2r−1. In fact, for any row vector
x ∈ Frq, we have

c = x
(
H0
r H1

r . . . H2r−1
r

)
= (xH0

r , xH
1
r , . . . , xH

2r−1
r) .

Another way of writing c is by labelling the components by bitstrings of length r directly so
c = (〈x|u〉)u∈{0,1}r . As x 6= 0, there exists an i ∈ {1, . . . r} such that xi 6= 0. Note that for any
bitstring u ∈ {0, 1}r and letting ei be the bitstring with 1 at coordinate i and zero elsewhere, then

〈x|v〉 = 〈x|u〉+ 〈x|ei〉 = 〈x|u〉+ xi = 〈x|u〉+ 1

This means that the component u and v of the codeword c are distinct, so exactly one of them takes
the value 1. Thus, we can find a perfect matching between the components u for which 〈x|u〉 = 1
and the ones for which 〈x|u〉 = 0 and thus |c| = 2r−1. ut

49

Algorithm 1 Generic decoding of linear code
1: input: y ∈ Σn with the promise that minx∈C ∆(y, x) ≤ t
2: output: x ∈ C
3: for i = 0 to t do
4: for e ∈ Fnq with |e| = i do
5: if HyT = HeT return y − e then
6: end if
7: end for
8: end for

Let us now summarize the codes we have seen so for. We focus on binary codes, i.e., q = 2 and
we let the blocklength n→∞. In this case the general bounds tell us 1−h2(d

n
) ≤ k

n
≤ 1−h2(d

2n
).

TODO: add graph here

6.2.3 Encoding and decoding of a linear code
Recall that an important goal we had is to construct codes with efficient encoding and decoding
algorithms. We saw that a linear code has a efficient representation, we now discuss the encoding
and decoding function.

Encoding. The encoding function maps the message we would like to send to corresponding
codeword. For an [n, k, d]q linear code over Fq, we can associate a natural encoding function: if
we can think of messages as vectors in a ∈ Fkq , then the encoding of a is aG ∈ Fnq . This encoding
function is quite efficient, it takes k · n operations in Fq to encode a message. If the generator
matrix is more structured, for example is sparse, it is possible to improve this to almost linear in n.

Decoding. Let us start with something simpler than decoding: detecting whether an error
occurred or not. Suppose we have a parity check matrix H for the code. If we receive y, we
simply need to compute HyT . If this is the zero vector, we say we have no error and otherwise,
there is an error. Of course, this only works if the error has weight at most d − 1. This cost in
general n(n− k) operations in Fq.

But in general, we not only want to detect whether there has been an error in y but also be
able to find x ∈ C in the code that is the closest to y (more precisely, we might want to determine
the message m such that C(m) = x but we will not worry about this distinction here, once you
obtain x you can get m by solving a linear system). Here is a simple generic algorithm to corrects
t errors in a code (for this to be possible, the minimum distance of C has to be at least d ≥ 2t+ 1).
We assume that the code is represented in terms of its parity check matrix. Suppose we send the
codeword x and an error e occurs, i.e., y = x + e. Note that finding x or finding e is the same
thing. So let us try to find e. For that, we can compute the syndrome of the error, which is defined
as the vector HyT = HxT + HeT = HeT . As such, we want to find the vector e ∈ Fnq with the
smallest weight such that HeT is equal to the observed syndrome.

Unfortunately, the running time of this generic decoding algorithm is large. In fact, we have
to go over all error vectors of weight at most t which is given by

∑t
i=0

(
n
i

)
(q − 1)i which is

exponentially large if t is linear in n for example. However, if we want to correct a constant number

50

Ni Luh Dewi Sintiari

Ni Luh Dewi Sintiari

of errors, then we obtain a polynomial time decoding algorithm. Note that for each candidate error
e, we should multiply it with H , which uses in general n(n− k) operations in Fq.

Looking at the example of the Hamming codes [2r, 2r − 1 − r, 3]2. The generic algorithm
corrects t = 1 error by going through all the n + 1 errors of weight at most 1. For each one
of these we multiply it with the parity check matrix. Generically, this gives a runtime of O(n3).
However, for the Hamming code, the decoding can even be done in linear time. For that we simply
compute the syndrome s = Hry

T and our objective is to find the e with minimum weight such that
Hre

T = s. So either, s = 0, in which case we know that e = 0, otherwise, we search for e of
weight 1. If ei has a one in position i, then Hre

T
i = H i

r but recall that this is nothing but the binary
representation of i. So the only thing we need to do is look at the syndrome and interpret it as a
number in {0, . . . , 2r − 1} and the error we are looking for is exactly at this position.

In general, the problem of decoding a linear code is the same as finding the solution e of a linear
systemHeT = s that has the smallest weight. This is a computationally hard problem (should have
it as a homework).

6.3 Reed-Solomon codes
We now introduce one of the most important families of codes. They have many applications even
outside of coding theory. It is defined in terms of univariate polynomials.

Recall that a polynomial over Fq can be seen as a function of the form F (X) =
∑d

i=0 fiX
i. If

fd 6= 0, then d = deg(F). The set of polynomials is denoted Fq[X].
The idea of Reed-Solomon codes is very simple, a message is a tuple (m0,m1, . . . ,mk−1) ∈ Fkq

that we can interpret as a polynomial fm(X) =
∑k−1

i=0 miX
i. Then the encoding of this message is

simply the evaluation of the polynomial fm in n distinct points.

Definition 6.3.1. Let α1, . . . , αn be distinct elements from Fq and choose n, k with k ≤ n ≤ q.
Then we define the Reed-Solomon codes RS : Fkq → Fnq by RS(m) = (fm(α1), . . . , fm(αn)),
where fm(X) =

∑k−1
i=0 miX

i.

A common special case is to take n = q − 1 and α1, . . . , αn all the nonzero elements in Fq.

Example. Let us consider an example with n = 3, k = 2 and q = 3. Then a message
(m0,m1) ∈ F2

3 or m0 + m1X ∈ F3[X]. We then choose α1 = 0, α2 = 1, α3 = 2. We then
have RS((m0,m1)) = (m0,m0 + m1,m0 + 2m1). For example, this gives (0, 0) 7→ (0, 0, 0) and
(1, 2) 7→ (1, 0, 2).

Observe that Reed-Solomon codes are linear codes. In fact, RS(m0 + m1) = RS(m0) +
RS(m1) for m0,m1 ∈ Fkq and RS(am) = aRS(m) for m ∈ Fkq and a ∈ Fq.

Proposition 6.3.2. The minimum distance of a Reed-Solomon code with parameters n, k is
n− k + 1.

Proof For a linear code, the minimum distance is given by the minimum weight of a nonzero
codeword. Let RS(m) = (fm(α1), . . . , fm(αn)) be a codeword, then the weight of this codeword
is simple |{i ∈ [n] : fm(αi) 6= 0}|.

Important fact: A nonzero polynomial P ∈ Fq[X] of degree t has at most t roots.

51

But deg(fm) ≤ k − 1 and fm 6= 0 as m 6= 0. As a result, |{i ∈ [n] : fm(αi) = 0}| ≤ k − 1
and as a result, |RS(m)| ≥ n− k + 1. And clearly we can define a polynomial with exactly k − 1
roots. ut

Note that this distance is optimal as it meets exactly the Singleton bound. For any code, we
have d ≤ n − k + 1. But note that we have a strong constraint that q ≥ n, in particular this does
not work for binary codes. This is only for large alphabets. Let us see an example of a generator
matrix for Reed-Solomon codes. If we choose the natural basis 1, X, . . . , Xk−1 for the messages,
then one can write

G =

1 1 . . . 1
α1 α2 . . . αn
α2

1 α2
2 . . . α2

n
...

...
αk−1

1 αk−1
2 . . . αk−1

n

Such a matrix is often called a Vandermonde matrix.

6.3.1 Efficient decoding of Reed-Solomon codes
Using the generic algorithm for decoding linear codes, we know we can correct up to d−1

2

errors. But this algorithm is inefficient. We will now see how to determine the error efficiently.
The task is the following: given y ∈ Fnq , we would like to find a polynomial P such that
∆((P (α1), . . . , P (αn)), y) < d

2
, where d = n − k + 1. Note that as we assume that y arises

from applying an error of weight < d
2

to some valid codeword, such a P exists and is unique. Note
that in the case where there are no errors, this is an interpolation problem, which can be solve
efficiently. But we cannot afford testing all the error patterns and applying interpolation in each
case.

The strategy will be to look for P together with a polynomial determining that characterizes
the positions where an error occurred. Let us introduce the error locator polynomial whose zeros
are exactly the positions that contain an error

E(X) =
n∏
i=1

yi 6=P (αi)

(X − αi) .

Note that the degree of E is exactly the number of errors and thus it is < d
2
. Of course, we do not

have access to E but we would like to find it. Note that the polynomials P and E we would like to
find satisfy the following identities for all i ∈ {1, . . . , n}:

yiE(αi) = P (αi)E(αi) . (6.1)

In fact, either E(αi) = 0 in which case equality clearly holds, or otherwise, E(αi) 6= 0 in which
case there is no error in position i and P (αi) = yi. Recall that P has degree at most k − 1 and
so is specified by k elements in Fq and E has a leading coefficient of 1 and so is specified by
deg(E) coefficients in Fq. So overall we are looking for k + deg(E) < k + n−k+1

2
= n+k+1

2

52

Algorithm 2 Decoding algorithm for a Reed-Solomon code RS
1: input: (y1, . . . , yn) ∈ Fnq with the promise that minm∈Fkq ∆(y,RS(m)) ≤ t
2: output: A polynomial P (X) of degree ≤ k − 1
3: let e0, . . . , et−1 and n0, . . . , nt+k−1 be variables in Fq
4: and E(X) = e0 + e1X + . . . et−1X

t−1 +X t and N(X) = n0 + . . . nt+k−1X
t+k−1.

5: solve the system of n equations in the 2t+ k variables defined above:
6: yiE(αi) = N(αi), 1 ≤ i ≤ n
7: if no solution exists or the obtained E(X) does not divide N(X) then
8: return fail
9: end if

10: P (X)← N(X)
E(X)

11: return P (X)

elements in Fq. So we have < n+k+1
2

variables and n equations in (6.1) so we can hope to be able
to recover all the coefficients of P and E. The however is that the equations (6.1) are quadratic in
these coefficients. So what we will do instead is solve the relaxation of equations (6.1) given by
weakening the condition that the right hand side is a product of P and E and treat it as a general
polynomial N of degree at most deg(P) + deg(E). We obtain the equations:

yiE(αi) = N(αi) , (6.2)

where deg(E) < d
2

= n−k+1
2

and deg(N) < k − 1 + n−k+1
2

= n+k−1
2

. Considering the coefficients
of E andN as variables, we have deg(N)+1+deg(E) < n−k+1+n+k−1

2
+1 = n+1 variables, i.e.,

at most n variables Note that the set of equations (6.2) definitely have a solution: simply take E to
be the actual error locator polynomial and take N = P · E. But as we will see by considerations
on the degree, we will see that this is indeed the unique solution. Let us now state the decoding
algorithm, called Welsh-Berlekamp. The parameters used are n, k and we use e to denote the
number of errors to be corrected: this is t = n−k

2
if n− k is even or t = n−k−1

2
if n− k is odd.

Running time. A linear system of n equations and at most n variables can be solved using
Gaussian elimination using O(n3) operations in Fq. Also note that the division N(X)

E(X)
can be done

just like primary school division: this is certainly bounded by O(n2) operations in Fq.

Correctness. First we show that provided minm∈Fkq ∆(y,RS(m)) ≤ t, the set of equations has
a valid solution. Recall that RS(m) = (fm(α1), . . . , fm(αn)) with m ∈ Fkq . Let us define
E∗(X) = X t−∆(y,RS(m))

∏
i:yi 6=fm(αi)

(X − αi) and N∗(X) = fm(X)E∗(X). Then E∗(X) has
degree exactly t with a leading coefficient of 1 andN∗(X) has degree at most t+k−1 as required.
In addition, E∗(X) and N∗(X) satisfies the linear equations line 6. For these solutions, E∗(X)
divides N∗(X) and the returned polynomial is P = fm, which is what we wanted.

But it remains to show that this valid solution is the unique one satisfying the linear equations
line 6. In fact, let E1, N1 and E2, N2 be two solutions of line 6. Then define

R(X) = N1(X)E2(X)−N2(X)E1(X) .

53

By assumption deg(N1E2) ≤ 2t+ k− 1, so deg(R) ≤ 2t+ k− 1. But as N1(αi) = yiE1(αi) and
N2(αi) = yiE2(αi), we have N1(αi)E2(αi) − N2(αi)E1(αi) = 0. As such R has n distinct roots
and degree ≤ 2t + k − 1 < n. This implies that R(X) = 0 and thus that N1(X)

E1(X)
= N2(X)

E1(X)
. Thus

any solution E,N leads to the same returned polynomial P . This concludes the correctness of the
algorithm.

So the family of Reed Solomon codes have very nice properties: it has optimal minimum
distance d = n − k + 1 which matches the Singleton bound and in addition we can encode and
decode in time that is polynomial in the blocklength n. For example, for k = n/2 we get a
minimum distance d = n

2
+ 1 so we have both k = Ω(n) and d = Ω(n). This is what we called

a good code. But the downside of these codes is that it only works if the alphabet size is large
enough, in particular q ≥ n. What if we want to construct good binary codes? In the next section,
we study a simple operation on codes that allows us to reach this.

6.4 Concatenation of codes
The idea of concatenation is simple. Let us start with a code C over Fq with blocklength n. Then
each codeword is composed of n symbols in Fq. Assume that q = 2t for some integer t. Then we
can associate to each symbol in Fq a bitstring of length t. So any codeword (x1, . . . , xn) ∈ C can
be seen as a bitstring of length tn of the form (x1,1 . . . x1,tx2,1 . . . x2,t . . . xn,1 . . . xn,t) ∈ {0, 1}nt.
This procedure gives a binary code with blocklength t · n and dimension t · k (the number of
codewords stays the same: it is qk = 2tk if k is the dimension of C).

For example, if we take a [n, n
2
, n

2
+ 1]n RS code. By doing this construction, we obtain an

[n log2 n,
n
2

log2 n, ?]2 error-correcting code. So the rate is good as it is linear in the blocklength.
Let us now analyze the minimum distance

∆(x1,1 . . . xn,t, y1,1 . . . , yn,t) = |{(i, j) ∈ [n]× [t] : xi,j 6= yi,j}|
≥ |{i ∈ [n] : xi 6= yi}|

≥ n

2
+ 1 ,

where we used the fact that the minimum distance of the RS code is n
2

+ 1. But this is not quite
linear in the blocklength, which was n log2 n. Note that the first inequality is tight if for every i
with xi 6= yi, there is a unique j such that xi,j 6= yi,j . And such codewords will in general exists.
For example take the zero codeword for x and the codeword with y1 = · · · = yk−1 = any nonzero
element of Fq whose binary representation has a unique 1, and yk = · · · = yn = 0. But this
suggests a idea to improve the minimum distance: instead of using a “trivial” representation for
the symbols xi, a better representation would be to encode these xi’s into an error correcting code
for each block.

Definition 6.4.1 (Code concatenation). Let Cout : [Q]K → [Q]N a (N,K,D)Q code and
Cin : [q]k → [q]n be a (n, k, d)q code with qk = Q. Then the concatenation Cout ◦ Cin is
a code with alphabet [q], blocklength nN and dimension kK defined by the encoding function
C : [Q]K → [q]nN as: for m ∈ [Q]K ,

C(m) = (Cin(Cout(m)1), Cin(Cout(m)2), . . . , Cin(Cout(m)n)) ,

where Cout(m)i is the i-th symbol of the codeword Cout(m).

54

Remark. In this construction, we have identified the set [Q] with the set [q]k. For
this identification, we can take an arbitrary bijection σ between the two sets (for efficiency
considerations, we also want this bijection to be efficiently computable both ways). Also when
the codes Cout and Cin are linear, we can take the bijection to be a linear map so that Cout ◦ Cin is
a linear code. To construct such a linear map, it suffices to see that Fqk is a vector space over Fq (in
fact it is the set of polynomials in Fq[X] modulo an irreducible polynomial E), then σ : Fkq → Fqk
mapping (a0, . . . , ak−1) 7→

∑k−1
j=0 ajX

j mod E is a valid bijection. We can also write a generator
matrix Gout◦in ∈ FkK×nNq for Cout ◦ Cin as a function of generator matrices Gout and Gin for Cout
and Cin:

Gout◦in =

σ−1 0 . . . 0
0 σ−1 0 . . .
...

...
0 . . . 0 σ−1

 ·Gout ·

σ 0 . . . 0
0 σ 0 . . .
...

...
0 . . . 0 σ

 ·

Gin 0 . . . 0
0 Gin 0 . . .
...

...
0 . . . 0 Gin

From now we identify between the sets without explicitly mentioning that we are applying σ

or σ−1.
In our example, Cout is a Reed-Solomon code with parameters [N, N

2
, N

2
+ 1]N and Cin is the

“identity” code with (n = logN, k = logN, d = 1)2 which maps a bitstring of length logN to the
same bitstring of length logN . The natural question is now about the distance of the concatenated
code Cout ◦ Cin.

Proposition 6.4.2 (Distance of a concatenated code). If Cout is a (N,K,D)qk code and Cin is a
(n, k, d)q code, then

Cout ◦ Cin is a (nN, kK, dD)q code.

Proof Let m 6= m′ ∈ [qk]K then ∆(Cout(m), Cout(m
′)) ≥ D. Note that here these are words of

length N with symbols in [qk]. Now for any i ∈ [N] such that Cout(m)i 6= Cout(m
′)i we can view

it as an element in [q]k and apply the encoding Cin to get ∆(Cin(Cout(m)i), Cin(Cout(m
′)i)) ≥ d.

Note that here the Hamming distance is between words of length n on the alphabet [q].

∆(Cout ◦ Cin(m), Cout ◦ Cin(m′)) =
∑

i:Cout(m)6=Cout(m′)

∆(Cin(Cout(m)i), Cin(Cout(m
′)i)) ≥ dD .

Note that we decomposed here a Hamming distance between words of length nN on the alphabet
[q]. ut

So now if we would like to find a good code, we can take Cout to be a Reed-Solomon code
and it remains to find a good inner code Cin. But what have we gained in reducing the problem to
finding a good inner code. The idea is that the inner code is a code over a small block length so
we can more easily find a good one. In particular, if n = logN as was the case for our example,
we can afford to search for a good code and have an exponential time decoder in the blocklength
of Cin.

55

6.4.1 Explicit construction of a good binary code
Now we are in a position to construct an explicit good binary code, i.e., one with dimension
k = Ω(n) and d = Ω(n). What we mean by explicit here is that we can construct a representation
of this code in time that is polynomial in the blocklength n. Note that if we take a random binary
linear code, it will be a good code with high probability, but then there is not much hope in getting
an efficient decoder.

This construction will use concatenation of two linear codes. We construct generator matrices
Gout and Gin of the outer and inner code in time that should be polynomial in the overall
blocklength of Cout ◦ Cin.

Naturally, we take Cout to be a Reed-Solomon code with parameters [N, N
2
, N

2
+ 1]N with

N = 2k. Note that we can take the alphabet size to be N as N is a prime power. Gout is simply an
N
2
×N Vandermonde matrix which can be constructed in time O(N2) and N will be smaller than

the overall blocklength.
Now for the inner code, it should have a dimension k satisfying N = 2k. We construct a

parity check matrix of a code achieving the Gilbert-Varshamov bound. For example, recall that
GV bound for linear codes in the HW. It said that provided 2n−k > 1 +

(
n−1

1

)
+ · · · +

(
n−1
d−2

)
, then

there is a [n, k, d]2 code. This code was obtained by adding columns to the parity check matrix one
by one in a way that each new column is not in the span of d − 1 previous columns. If we take
n = 2k and d = 0.1n, then the condition is satisfied:

2n−k = 2k

1 +

(
n− 1

1

)
+ · · ·+

(
n− 1

d− 2

)
≤ 2(n−1)h2(d−2

n−1
) < 22kh2(0.1) < 2k .

So there exists a parity check matrix H ∈ Fk×2k
2 . How long does constructing such a parity check

matrix take? For each new column, we should try all the possible linear combinations of d − 1
columns: there are at most

(
2k
d

)
≤ 22k. Each step costs (d − 1)k = O(k2). So overall O(k322k)

steps to build the parity check matrix H . It is then simple to transform this parity check matrix into
a generator matrix for the same code. Recalling that k = logN , this number of steps is polynomial
in N .

In summary, we have constructed the generator matrix of a binary code with blocklength
N · (2 logN), dimension N

2
· logN and minimum distance (N

2
+ 1) · 0.2 logN . Observe that both

the dimension and the minimum distance are linear in the blocklength. In addition, generating this
matrix can be done in time polynomial in the blocklength.

6.4.2 Decoding a concatenated code
We would like to decode the code define in the previous section efficiently. For this, there is a
natural decoding algorithm for a concatenated code. Decode each block first using the inner code.
And then decode the outer code. Assume we have a decoding functions DCin : [q]n → [q]k

and DCout : [qk]N → [qk]K . Then, for (y1 . . . yn) ∈ (Fnq)N , define DCout◦in(y1 . . . yn) =
DCout(DCin(y1), . . . , DCin(yn)). Note that as usual, we have identified [q]k and [qk] here.

The running time of the functionDCout◦in isN ·T (DCin)+T (DCout), where T (D) is the running
time of the functionD. For the example introduced in the last section, we have T (DCout) = O(N3)

56

as shown in the last lecture. For the code Cin, we can just use the generic decoding for linear
codes which runs in time O(22kk2) = O(N2 log2N). Overall, we obtain a running time that is
polynomial in N .

But now it remains to show that this algorithm DCout◦in actually does correct errors.

Proposition 6.4.3. The algorithm DCout◦in can correct < Dd
4

errors.

Remark. This is not optimal. The distance of the concatenated code id Dd so in principle can
correct < Dd/2 errors. A smarted choice of decoder can do that.
Proof Let m be such that ∆(Cout ◦ Cin, y) < dD

4
. Want to show that the algorithm outputs m.

Define the bad set

B = {i ∈ [N] : DCin(yi) 6= Cout(m)i} .

If |B| < D
2

, then the decoder DCout will be able to correct all the errors and the output of the
algorithm will be m.

Otherwise, if |B| ≥ D
2

. Then for each i ∈ B,DCin(yi) 6= Cout(m)i, then ∆(yi, Cin(Cout(m)i)) ≥
d
2
. So

∆ ((y1 . . . yn), (Cin(Cout(m)1), . . . , Cin(Cout(m)N))) ≥ D

2
· d

2
,

which contradicts our assumption. ut
As a conclusion, there exists binary codes with dimension k = Ω(n) and distance d = Ω(n)

with encoding and decoding that can be computed in polynomial time in n.

6.5 An application of error-correcting codes
Error-correcting codes have many applications in various areas of computer science. We will see
a simple application to the problem of testing the equality between two bitstrings. This is also the
opportunity to introduce a very useful model: communication complexity.

6.5.1 Communication complexity
Very simple model that quantifies the amount of communication needed to compute a distributed
function.

More precisely, suppose Alice has some bitstring x ∈ {0, 1}n (we call it his input) and Bob has
a bitstring y ∈ {0, 1}n. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function known to both Alice and
Bob.

Objective: Compute f(x, y) using a protocol
Resource: Minimize communication between Alice and Bob (we don’t care about computa-

tion)
Let us consider some examples of functions.

• PAR(x, y) =
∑n

i=1(xi + yi) mod 2. To compute this function, Alice can send the parity of
her bits. Bob can then compute the parity as (

∑n
i=1 xi mod 2) +

∑n
i=1 yi mod 2, and send

the result to Alice. The communication cost of this protocol is 2 bits.

57

• EQ(x, y) =

{
0 if x 6= y
1 if x = y

Alice could send x to Bob and Bob computes EQ(x, y) and

sends back the result to Alice. The communication cost of this protocol is n+ 1. This trivial
protocol actually works for any function.

Description of a protocol. In general a protocol is a sequence of deterministic algorithms
modelling Alice and Bob’s behavior. Alice computes a1 = A1(x) and sends it to Bob, then
Bob computes B1(y, a1) and sends it to Alice etc... and the last message is the output of the
function. The cost of the protocol on inputs (x, y) is the total number of bits communicated:
|a1|+ |b1|+ · · ·+ |ak|+ |bk|. The cost of a protocol is the maximum over all possible inputs (x, y)
of the cost on input (x, y).

We can then define for any function f : {0, 1}n × {0, 1}n → {0, 1}, the deterministic
communication complexity of f as

D(f) = min
P protocol computing f

cost(P) .

We saw for example that D(PAR) ≤ 2 and D(EQ) ≤ n+ 1. Can we do better for EQ?

Proposition 6.5.1. D(EQ) ≥ n+ 1.

Proof We will only proveD(EQ) ≥ n. Suppose we have a protocol P of cost≤ n−1. How many
possible transcripts of length≤ n−1 are there? At most 2n−1. So there must exist two inputs (x, x)
and (x′, x′) for x 6= x′ for which the communication transcript is the same. Let us call the transcript
(a1, b1, . . . , ak, bk), note that we have a1 = A1(x) = A1(x′), b1 = B1(x, a1) = B(x′, a1) etc... So
in particular, the output of the protocol is the same for these two inputs P(x, x) = P(x′, x′) = 1.
This is very good because the value of EQ is the same on these two inputs. But now let us analyze
the protocol for the input (x, x′). The first message that is sent by Alice is A1(x) which happens
to be equal to a1. Then the message sent by Bob is B1(x′, a1) which in turn happens to be b1. So
this means that the transcript of the protocol is exactly the same for the input (x, x′), which implies
that P(x, x′) = 1, which contradicts the fact that P computes f . ut

Randomized communication complexity
Now assume that Alice and Bob have some random coins and they are allowed to make

some small error probability ε. Now P is a randomized protocol (randomness comes from
the coins of Alice and Bob). We say that P computes f with error ε if for all inputs x, y,
P {P(x, y) 6= f(x, y)} ≤ ε. Note that the probability is over the coins of Alice and Bob and not
over the input. We also have to define the cost a protocol as it might depend on the randomness.
We define it also in the worst case over the coins of Alice and Bob.

Rε(f) min
randomized P with P{P(x,y)6=f(x,y)}≤ε

cost(P) .

We can focus on say ε = 1/3. By repeating, we can reduce the error.

Proposition 6.5.2. R1/3(EQ) = O(log n)

58

Proof As a first try, we can try the following. Alice chooses i ∈ [n] at random and sends (i, xi)
and Bob says 1 if xi = yi and 0 if xi 6= yi. Then if x = y, then the protocol always outputs 1, there
is no error. But if x 6= y, we have P {P(x, y) = 1} = 1− ∆(x,y)

n
. Note that this could be n−1

n
if x

and y are at distance 1 (recall that we want the probability bound for every inputs).
Now the natural idea here is to use an error correcting code. Take a [3n, n, 2n + 1]q Reed-

Solomon code with q = O(n). The protocol is then as follows

• Alice chooses an index i ∈ [3n] at random and sends (i, C(x)i)

• Bob sends 1 to Alice if C(x)i = C(y)i and 0 otherwise

Let us start with the correctness of the protocol. If x = y, the output is always 1. If x 6= y, then

P {P(x, y) = 1} =
|{i : C(x)i = C(y)i}|

3n

≤ 3n− (2n+ 1)

3n
≤ 1

3
.

Now the cost of the protocol is log(3n) + log q = O(log n). ut

59

6.6 Introduction to quantum information theory
In all our discussion in this course, we never talked about the physical way of storing information
as this was not relevant. The only important property is that the information carrying system
should have a certain number of distinguishible states that we can label by a finite set Σ. This can
be physically realized in many ways: presence of electric current, pixel lighting, color of a paper,
etc... For concreteness, let us take a switch that can have two distinguishable positions: “on” also
labeled 1 or “off” also labeled 0. When we only care about the information stored in such a system,
the state of the system is given by an element s ∈ Σ, in our example Σ = {0, 1}. For example, a
channel with inputs in X and outputs in Y can be implemented by a physical system that can be
prepared in one of |X | distinguishable states and evolves into a system that has |Y| distinguishable
states.

In such a discussion, we made a hidden assumption: that the complete way of describing the
state of the switch is by an element in Σ = {0, 1}. Quantum theory tells us that these are not the
only valid states of the system: namely any “superposition” of the two valid distinguishable states
is also a valid quantum state and can in principle be realized. Quantum information theory is about
exploiting this whole set of possibilities that is given to us by such superpositions.

6.7 Representation of a quantum system
To get to the representation of a quantum system, it is useful to start with a probabilistic model.
Continuing with our switch example, now the way of describing the state of the switch is by a

probability vector v =

(
1/4
3/4

)
. We see the first entry (1/4) as the probability of being in the

state 0 and the second entry (3/4) as the probability of being in the state 1. An important point to
understand is that the vector v is a representation of our knowledge about the system and looking
at the switch, we don’t see v but we see that it is on or off. The entries of v are only giving
probabilities for each setting.

Note here that one important feature that will be important in quantum theory is that the action
of looking at the switch, I changed my description of the state. I started with v and after looking,

my description became
(

1
0

)
if I saw that it was off and

(
0
1

)
if I saw it was on.

Let us now model to a quantum model for the same switch system. We still have the

distinguishable states “off” and “on”, which we can write as in the probabilistic model as
(

1
0

)
and(

0
1

)
. Now the difference with a probabilistic model is that the state of knowledge is represented by

vector v =

(
α
β

)
with α, β ∈ C and |α|2 + |β|2 = 1. The numbers α and β are called amplitudes.

Some examples include: (
1/
√

2

−1/
√

2

)
,

(
1
0

)
,

(
3/5
4i/5

)
Such a system holds one qubit of information.

60

There are two kinds of operations you can do:

1. Look at the switch that we call perform a measurement. We do not see v, we see either 0 or 1
with probability |α|2 and |β|2 respectively. Again, after the measurement, the state becomes(

1
0

)
or
(

0
1

)
depending on the observed outcome. Another way of writing this is that for

a vector v ∈ C2, the probability of observing outcome 0 is |〈e0|v〉|2 and the probability of

observing |〈e1|v〉|2, where e0 =

(
1
0

)
.

2. Transform without looking that we call perform a unitary. Note that a valid transformation
has to transform vectors of unit `2 norm into vectors of unit `2 norm. These are exactly
unitary transformations, i.e., matrices U such that U∗U = id, with U∗ is the conjugate
transpose of U . Examples of unitaries include

I =

(
1 0
0 1

)
, NOT =

(
0 1
1 0

)
, H =

(
1√
2

1√
2

1√
2
− 1√

2

)
.

So what happens if we start with a state that if “off”, then apply Hadamard and then measure?(
1
0

)
, then H

(
1
0

)
=

(
1√
2

1√
2

)
which gives “off” with probability 1/2 and “on” with probability

1/2.
Let us do a small exercise: suppose we have a system and we are guaranteed in is in on of the

two states: v0 =

(
1√
2

1√
2

)
or v1 =

(
1√
2

− 1√
2

)
. Can I determine whether the system is in v0 or v1?

Yes just apply Hadamard and then measure. If I see 0 then the system was in v0 and if I see 1
the system was in v1. More generally, if v0 and v1 are orthogonal then I can perfectly distinguish
them.

How many bits can we store in a qubit? Well suppose you want to store a trit (i.e., 3 possible
values 0, 1, 2) using such a qubit system. Then for each value you would have a corresponding
state: v0, v1, v2. Storing reliably means that by performing some operations on the system you
should be able to retrieve which value is stored. It is simple to store a bit in a qubit system: just let

v0 =

(
1
0

)
and v1 =

(
0
1

)
and to retrieve the value we simply measure. However, intuitively, if we

try to have 3 states then they cannot be orthogonal so I won’t have a way of distinguishing them
perfectly.

What if we allow some error? It turns out that in some settings having a qubit can have an
advantage for better storage.

61

Bibliography

[1] Y Polyanskiy and Y Wu. Lecture notes on information theory, 2014.

[2] C. Shannon. A mathematical theory of communications. Bell System Technical Journal,
27:379–423, 1948.

62

	Introduction
	An introductory example
	Encoding 1: Trivial encoding
	Encoding 2: Repetition code
	Encoding 3: Taking larger blocks

	Information measures
	Probability notation
	Entropy of an event or a random variable
	Joint entropy and conditional entropy

	Data compression
	Setting
	Variable-length lossless compression
	General compressors
	Uniquely decodable and prefix-free compressors

	Fixed-length almost lossless compression
	Universal compression
	Arithmetic codes
	Lempel-Ziv coding (TODO)

	Lossy compression (TODO)

	Noisy channel coding
	Basic setting
	The information capacity
	Converse bounds
	Achievability bounds

	Information theory and combinatorics
	Projection of point sets
	Number of independent sets in a graph

	Error-correcting codes
	General error-correcting codes
	General bounds on the best codes

	Linear error-correcting codes
	Minimum distance of a linear code
	Dual code of a linear code
	Encoding and decoding of a linear code

	Reed-Solomon codes
	Efficient decoding of Reed-Solomon codes

	Concatenation of codes
	Explicit construction of a good binary code
	Decoding a concatenated code

	An application of error-correcting codes
	Communication complexity

	Introduction to quantum information theory
	Representation of a quantum system

